PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal Changes of Soil Nitrogen Mineralization Along Restoration Gradient of Sandy Grassland, Northern China

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil nitrogen mineralization strongly affects N availability, thus impacting the primary productivity in ecosystems. The seasonal environmental changes affect soil mineralization in restored sandy grasslands such as a studied mobile dune (MD), a semi-fixed dune (SFD), a fixed dune (FD) and a grassland (G). During the growing season, we examined the association of soil N mineralization rate with vegetation characteristics, soil properties and climatic factors through the multivariate stepwise regression model. The vegetation cover, species diversity, above- and belowground biomass, soil carbon, nitrogen, soil water content (SWC), pH, electrical conductivity, very fine sand, clay and silt fractions increased during sandy grassland restoration. The NH4+-N concentration in MD and SFD was higher than that in FD and G, while NO3--N and inorganic N concentration showed a reverse trend. The NH4+N, NO3--N and inorganic N concentrations in MD, SFD and FD reached to the highest values in June, while in G they were highest in May. The net mineralization and nitrification rates increased with sandy grassland restoration; both of these rates were much greater in June than in other months at all sites. Regression analysis showed that the NO3--N concentration, SWC, pH of the soil and precipitation could explain 75% of the total variation in net nitrification rate, and the NO3--N concentration and precipitation could explain 59% of the total variation in the net mineralization rate. These results illustrate that the sandy grassland restoration can enhance the soil N availability, with soil N mineralization mainly determined by the changes of the NO3--N concentration and precipitation.
Rocznik
Strony
283--295
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • University of Chinese Academy of Sciences, Beijing, 100049, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • University of Chinese Academy of Sciences, Beijing, 100049, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • University of Chinese Academy of Sciences, Beijing, 100049, China
  • Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • University of Chinese Academy of Sciences, Beijing, 100049, China
autor
  • Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
  • University of Chinese Academy of Sciences, Beijing, 100049, China
Bibliografia
  • 1. Abed R. M. M., De Beer D., Stief P. 2015 – Functional-Structural Analysis of Nitrogen-Cycle Bacteria in a Hypersaline Mat from the Omani Desert – Geomicrobiol. J. 32: 119-129.
  • 2. Bhatti A., McClean C. J., Cresser M. S. 2014 – What limits soil N-cycling and potential losses under grassland at Hob Moor, York, UK? – Geoderma, 232: 619-627.
  • 3. Billings S. A., Schaeffer S. M., Evans R. D. 2004 – Soil microbial activity and N availability with elevated CO2 in Mojave desert soils – Global Biogeochem. Cy. 18: 1-11.
  • 4. Cao Y. Z., Wang X. D., Lu X. Y., Yan Y., Fan J. H. 2013 – Soil organic carbon and nutrients along an alpine grassland transect across Northern Tibet – J. Mt. Sci. 10: 564-573.
  • 5. Cong W. F., van Ruijven J., van der Werf W., De Deyn G. B., Mommer L., Berendse F., Hoffland E. 2015 – Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil – Soil Biol. Biochem. 80: 341-348.
  • 6. Das A. K., Boral L., Tripathi R. S., Pandey H. N. 1997 – Nitrogen mineralization and microbial biomass-N in a subtropical humid forest of Meghalaya, India – Soil Biol. Biochem. 29: 1609-1612.
  • 7. Eno C. F. 1960 – Nitrate production in the field by incubating the soil in buried polyethylene bags – Soil Sci. Soc. Amer. Pro. 24: 277-279.
  • 8. Fornara D. A., Tilman D. 2008 – Plant functional composition influences rates of soil carbon and nitrogen accumulation – J. Ecol. 96: 314-322.
  • 9. Gelfand I., Grunzweig J. M., Yakir D. 2012 – Slowing of nitrogen cycling and increasing nitrogen use efficiency following afforestation of semi-arid shrubland – Oecologia, 168: 563575.
  • 10. Guo Y. R., Zhao H. L., Zuo X. A., Drake S., Zhao X. Y. 2008 – Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China – Environ. Geol. 54: 653-662.
  • 11. Hooker T. D., Stark J. M. 2008 – Soil C and N cycling in three semiarid vegetation types: Response to an in situ pulse of plant detritus – Soil Biol. Biochem. 40: 2678-2685.
  • 12. Hu B., Zhou M. H., Dannenmann M., Saiz G., Simon J., Bilela S., Liu X. P., Hou L., Chen H., Zhang S. X., Butterbach-Bahl K., Rennenberg H. 2017 – Comparison of nitrogen nutrition and soil carbon status of afforested stands established in degraded soil of the Loess Plateau, China – Forest Ecol. Manag. 389: 46-58.
  • 13. Huang Z. Q., Wan X. H., He Z. M., Yu Z. P., Wang M. H., Hu Z. H., Yang Y. S. 2013 – Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China – Soil Biol. Biochem. 62: 68-75.
  • 14. Jager M. M., Richardson S. J., Bellingham P. J., Clearwater M. J., Laughlin D. C. 2015 – Soil fertility induces coordinated responses of multiple independent functional traits – J. Ecol. 103: 374-385.
  • 15. James J. J., Tiller R. L., Richards J. H. 2005 – Multiple resources limit plant growth and function in a saline-alkaline desert community – J. Ecol. 93: 113-126.
  • 16. Javad M., Mehdi H., Prevosto B. 2017 – Effects of vegetation patterns and environmental factors on woody regeneration in semi-arid oak-dominated forests of western Iran – J. Arid Land 9: 368-378.
  • 17. Ke P. J., Miki T., Ding T. S. 2015 – The soil microbial community predicts the importance of plant traits in plant-soil feedback – New Phytol. 206: 329-341.
  • 18. Li Y. Q., Brandle J., Awada T., Chen Y. P., Han J. J., Zhang F. X., Luo Y. Q. 2013 – Accumulation of carbon and nitrogen in the plant-soil system after afforestation of active sand dunes in China's Horqin Sandy Land – Agr. Ecosyst. Environ. 177: 75-84.
  • 19. Li X. J., Yang H. T., Shi W. L., Li Y. F., Guo Q. 2018 – Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert, Northern China – Catena, 169: 11-20.
  • 20. Li M., Zhou X. H., Zhang Q. F., Cheng X. L. 2014 – Consequences of afforestation for soil nitrogen dynamics in central China – Agr. Ecosyst. Environ. 183: 40-46.
  • 21. Liao X. L., Inglett P. W., Inglett K. S. 2016 – Seasonal patterns of nitrogen cycling in subtropical short-hydroperiod wetlands: Effects of precipitation and restoration – Sci. Total Environ. 556: 136-145.
  • 22. Loick N., Dixon E., Abalos D., Vallejo A., Matthews P., McGeough K., Watson C., Baggs E. M., Cardenas L. M. 2017 – “Hot spots” of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil – Geoderma, 305: 336-345.
  • 23. Lozano Y. M., Hortal S., Armas C., Pugnaire F. I. 2014 – Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment – Soil Biol. Biochem. 78: 298-306.
  • 24. Niklaus P. A., Wardle D. A., Tate K. R. 2006 – Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils – Plant Soil 282: 83-98.
  • 25. Ochoa-Hueso R., Maestre F. T., de los Rios A., Valea S., Theobald M. R., Vivanco M. G., Manrique E., Bowker M. A. 2013 – Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems – Environ. Pollut. 179: 185-193.
  • 26. Palatinszky M., Herbold C., Jehmlich N., Pogoda M., Han P., von Bergen M., Lagkouvardos I., Karst S. M., Galushko A., Koch H., Berry D., Daims H., Wagner M. 2015 – Cyanate as an energy source for nitrifiers – Nature, 524: 105-108.
  • 27. Peichl M., Leava N. A., Kiely G. 2012 – Above- and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland – Plant Soil, 350: 281-296.
  • 28. Qiao C. L., Liu L. L., Hu S. J., Compton J. E., Greaver T. L., Li Q. L. 2015 – How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input – Global Change Biol. 21: 1249-1257.
  • 29. Raison R. J., Connell M. J., Khanna P. K. 1987 – Methodology for Studying Fluxes of Soil Mineral-N in situ – Soil Biol. Biochem. 19: 521-530.
  • 30. Robinson J. B. 1963 – Nitrification in a New Zealand grassland soil – Plant Soil, 19:173-183.
  • 31. Rosenzweig S. T., Carson M. A., Baer S. G., Blair J. M. 2016 – Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration – Appl. Soil Ecol. 100: 186-194.
  • 32. Smith S. R., Hadley P. 1989 – A Comparison of Organic and Inorganic Nitrogen Fertilizers - Their Nitrate-N and Ammonium-N Release Characteristics and Effects on the Growth-Response of Lettuce (Lactuca Sativa L Cv Fortune) – Plant Soil, 115: 135-144.
  • 33. Sousa F. P., Ferreira T. O., Mendonca E. S., Romero R. E., Oliveira J. G. B. 2012 – Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification – Agr. Ecosyst. Environ. 148: 11-21.
  • 34. Srivastava P., Raghubanshi A. S., Singh R., Tripathi S. N. 2015 – Soil carbon efflux and sequestration as a function of relative availability of inorganic N pools in dry tropical agroecosystem – Appl. Soil Ecol. 96: 1-6.
  • 35. Su Y. Z., Li Y. L., Zhao H. L. 2006 – Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, inner Mongolia, northern China – Biogeochemistry, 79: 297-314.
  • 36. Su L., Yang Y. S., Li X. Y., Wang D., Liu Y. C., Liu Y. Z., Yang Z. L., Li M. M. 2018 – Increasing plant diversity and forb ratio during the revegetation processes of trampled areas and trails enhances soil infiltration – Land Degrad. Dev. 29: 4025-4034.
  • 37. Su Y. Z., Zhao H. L., Li Y. L., Cui J. Y. 2004 – Influencing mechanisms of several shrubs on soil chemical properties in semiarid Horqin Sandy Land, China – Arid Land Res. Manag. 18: 251-263.
  • 38. Su Y. Z., Zhao W. Z., Su P. X., Zhang Z. H., Wang T., Ram R. 2007 – Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an and region: A case study in Hexi Corridor, northwest China – Ecol. Eng. 29: 117-124.
  • 39. Tapia-Torres Y., Lopez-Lozano N. E., Souza V., Garcia-Oliva F. 2015 – Vegetation-soil system controls soil mechanisms for nitrogen transformations in an oligotrophic Mexican desert – J. Arid. Environ. 114: 62-69.
  • 40. Taylor Q. A., Midgley M. G. 2018 – Prescription side effects: Long-term, high-frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest – For. Ecol. Manage. 411: 82-89.
  • 41. Tho B. T., Lambertini C., Eller F., Brix H., Sorrell B. K. 2017 – Ammonium and nitrate are both suitable inorganic nitrogen forms for the highly productive wetland grass Arundo donax, a candidate species for wetland paludiculture – Ecol. Eng. 105: 379-386.
  • 42. Wang H. L., Deng N., Wu D. Y., Hu S., Kou M. 2017 – Long-termnet transformation and quantitative molecular mechanisms of soil nitrogen during natural vegetation recovery of abandoned farmland on the Loess Plateau of China – Sci. Total Environ. 607: 152-159.
  • 43. Wolkovich E. M., Lipson D. A., Virginia R. A., Cottingham K. L., Bolger D. T. 2010 – Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland – Global Change Biol. 16: 1351-1365.
  • 44. Xu X. L., Ma K. M., Fu B. J., Liu W., Song C. J. 2009 – Soil and water erosion under different plant species in a semiarid river valley, SW China: the effects of plant morphology – Ecol. Res. 24: 37-46.
  • 45. Xu X. L., Ma K. M., Fu B. J., Song C. J., Liu W. 2008 – Relationships between vegetation and soil and topography in a dry warm river valley, SW China – Catena, 75: 138-145.
  • 46. Yang L. L., Zhang F. S., Gao Q. A., Mao R. Z., Liu X. J. 2010 – Impact of land-use types on soil nitrogen net mineralization in the sandstorm and water source area of Beijing, China – Catena, 82: 15-22.
  • 47. Yao H. Y., Campbell C. D., Qiao X. R. 2011 – Soil pH controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils – Biol. Fert. Soils, 47: 515-522.
  • 48. Zhang C., Liu G. B., Song Z. L., Wang J., Guo L. 2018 – Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands – Soil Biol. Biochem. 124: 47-58.
  • 49. Zhang C., Liu G. B., Xue S., Wang G. L. 2016 – Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau – Soil Biol. Biochem. 97: 40-49.
  • 50. Zhang J., Zhao H., Zhang T., Zhao X., Drake S. 2005 – Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land – J. Arid Environ. 62: 555-566.
  • 51. Zhang K., Su Y. Z., Wang T., Liu T. N. 2016 – Soil properties and herbaceous characteristics in an age sequence of Haloxylon ammodendron plantations in an oasis-desert ecotone of northwestern China – J. Arid Land, 8: 960-972.
  • 52. Zhao H. L., Zhou R. L., Su Y. Z., Zhang H., Zhao L. Y., Drake S. 2007 – Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia – Ecol. Eng. 31: 1-8.
  • 53. Zhou L. S., Huang J. H., Lu F. M., Han X. G. 2009 – Effects of prescribed burning and seasonal and interannual climate variation on nitrogen mineralization in a typical steppe in Inner Mongolia – Soil Biol. Biochem. 41: 796-803.
  • 54. Zuazo V. H. D., Pleguezuelo C. R. R. 2008 – Soil-erosion and runoff prevention by plant covers. A review – Agron. Sustain. Dev. 28: 65-86.
  • 55. Zuo X. A., Wang S. K., Zhao X. Y., Lian J. 2014 – Scale dependence of plant species richness and vegetation-environment relationship along a gradient of dune stabilization in Horqin Sandy Land, Northern China – J. Arid Land, 6: 334-342.
  • 56. Zuo X. A., Zhang J., Zhou X., Zhao X. Y., Wang S. K., Lian J., Lv P., Knops J. 2015 – Changes in carbon and nitrogen storage along a restoration gradient in a semiarid sandy grassland – Acta Oecol. 69: 1-8.
  • 57. Zuo X. A., Zhao X. Y., Wang S. K., Li Y. Q., Lian J., Zhou X. 2012 – Influence of dune stabilization on relationship between plant diversity and productivity in Horqin Sand Land, Northern China – Environ. Earth Sci. 67: 1547-1556.
  • 58. Zuo X. A., Zhao X. Y., Zhao H. L., Zhang T. H., Guo Y. R., Li Y. Q., Huang Y. X. 2009 – Spatial heterogeneity of soil properties and vegetation-soil relationships following vegetation restoration of mobile dunes in Horqin Sandy Land, Northern China – Plant Soil 318: 153-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0a1bb2f-8801-4d43-81fa-21769c454fca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.