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The paper presents an analysis of the transient state in a simple circuit of RCα class 
with a supercapacitor. The behavior of supercapacitors differs from that of classic 
capacitors, which influences voltage and current waveforms in circuits containing them. 
The waveforms are described by relations of fractional-order integral-differential 
calculus. A simple fractional-order supercapacitor model, including its series internal 
resistance, has been assumed for the analysis. The obtained solution of the fractional-
order differential equation describing the examined circuit is presented. The impact of 
different values of the parameter α on the solution has been analyzed too. The derived 
relations are illustrated by simulation examples for the circuit powered by a DC voltage 
source. This situation describes the supercapacitor charging process. Its charging time 
depends mainly on the value of fractional-order parameter α of the supercapacitor. 
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1. INTRODUCTION 
 

From experimental studies it is known, that charging and discharging 
waveforms of supercapacitors differ from those of classic dielectric capacitors. 
It is due to their high capacity, up to even a few thousand Farads, their 
electrochemical structure and a relatively large internal series resistance ESR 
[1]. Therefore, their behaviour is more and more frequently accurately described 
using fractional-order integral-differential calculus [2]. It shows a good 
accuracy in describing these elements. It is also used to describe real, lossy 
coils, especially those with soft, ferromagnetic cores [3].  

The analysis of transient states in circuits with fractional-order elements is 
the subject of several works [4-6]. They present numerical methods for solving 
linear fractional-order differential equations or analyze some particular cases of 
fractional-order parameters. This paper is devoted to the analysis of the transient 
state in a simple circuit with a resistor and a supercapacitor modeled as a 
fractional-order Cα element. 
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2. THE MODEL OF THE SYSTEM CIRCUIT 
 

The model of the analyzed (in time domain) simple RCα circuit with 
supercapacitor is presented in Fig. 1. 
 

 
 

Fig. 1. Model of the analyzed simple RCα circuit with supercapacitor 
 
 The model from Fig. 1 includes the voltage source e(t), the series resistance R, 
limiting the charging current, the supercapacitor modeled as a fractional-order Cα 
capacitance and its internal series resistance RC. In the analysis of charging and 
discharging of the fractional-order capacitor (and transient states with other kinds of 
sources), the voltage ucs(t) and current i(t) waveforms are most interesting. Zero 
initial conditions for supercapacitor have been assumed ucα(0) = ucα(0-) = ucα(0+). 
Starting from the simple impedance model Z(jω) of the fractional-order capacitor: 
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and treating it as a voltage-current transmittance, the impedance can be written 
in the Laplace domain as: 
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Transforming expression (2) and calculating the inverse transform, the 
current flowing in the analyzed circuit can be written in the form: 

   





 dt
tudCti C .          (3) 

It means that the current flowing in the circuit is a fractional-order derivative of 
the voltage on the supercapacitor. The next part of the paper is the analysis of the 
concerned circuit in the time domain. The relations describing voltage ucs(t) and 
current i(t) have been obtained by solving the fractional-order differential 
equation. The derived relations have been simulated and illustrated in Figs. 2 – 4.  
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3. ANALYSIS OF THE CIRCUIT STATE EQUATION 
 

For the examined circuit, at any voltage source waveform, the state equations 
can be written as: 

   
0 




 dt
tudCti C ,         (4) 

and: 
       tetutiRR CC   .         (5) 

By substituting equation (4) into (5) the fractional-order differential equation, 
describing the voltage ucα(t) in time domain, has been obtained: 
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where: 
CZ RRR  .          (7) 

 Solving the above fractional-order differential equation is possible using the 
Laplace transform method, since the analyzed system is linear. Using the 
Laplace of a fractional derivative defined by Caputo [7]: 
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equation (6) can be written in the s-domain as: 
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hence: 
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The current I(s) can be calculated from the transmittance: 
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For a constant voltage source e(t) = E = const. in the simple RCα circuit 
charging the supercapacitor, equations describing the voltage across the 
supercapacitor Ucs(s), containing the internal resistance RC, based on formulas 
(10) and (11) can be defined as: 
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A relationship occurs [7]: 
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where:    
 atE k ,  is a classic k-th order derivative of a two-parameter Mittag-

Leffler function. From the above relation and the convolution theorem we 
obtain: 
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or in the form of a series: 

    
  


 d

kΓCRR
R

CR
EE

R
R

tu
k

t k
k

ZZ

C

ZZ

C
cs  


























0
0

11

1
111 .  (15) 

Integral (15) can be solved analytically, so it finally takes the form: 
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Calculating the inverse Laplace transform of the current i(t) analogically, as 
in the case of the voltage ucs(t), the relation has the form of integral: 
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and finally: 
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In the next section an example of RCα circuit with supercapacitor, powered 
by a DC voltage source, is presented. Illustrations of charging voltage and 
current are also included. 

 
4. EXAMPLE 

 
Based on the previous studies, simulations of the transient state in an 

exemplary simple RCα circuit with supercapacitor, modeled as a fractional-order 
element were conducted. There were assumed the following parameters of the 
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circuit elements: the supercapacitor of nominal capacitance C = 0,1 F and the 
resistance RC = 28 Ω [8], the charging current limiting resistor R = 100 Ω and the 
DC voltage source E = 5 V. Simulations of the charging voltage ucs(t) and the 
current  i(t) in the circuit were made in Mathematica, PSpice and Maple 
programs. Illustrations of these waveforms are shown in Figs. 2-4. For practical 
reasons, k = 2000 elements were assumed in numerical computations (instead of 
∞ in Mittag-Leffler function). 

 
 

 
 

Fig. 2. Waveforms of a. voltage ucs(t) and b. current i(t) based on fomulas (16) and (18)  
for α <0,1> and k = 2000, obtained in Mathematica 

 
 
 

 
 

Fig. 3. Wavefoms of a. voltage ucs(t) and b. current i(t) for α <0,1> obtained in PSpice program 
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Fig. 4. Waveforms of a. voltage ucs(t) and b. current i(t) based on formulas (21) and (24)  
for α  <0,1> and k = 2000, obtained in Maple 

 
The voltage waveforms obtained in Mathematica, PSpice and Maple 

programs have the same form for all the specified values of the coefficient α, 
compare with Figs. 2-4a, but the current waveforms look the same only for the 
simulations performed in Mathematica and Maple programs (see. Figs. 2-4b). 
Instantaneous current value from PSPice program for small values of α, e.g. up 
to α ≈ 0.3 does not decrease, but begins to grow (see Fig. 3b). This means that 
the PSpice algorithms do not give reliable numerical results for small values of 
fractional-order coefficients. 
 

5. SUMMARY 
 

The paper analyzes the transient state in a simple RCα circuit with 
a supercapacitor. Voltage and current waveforms in circuits with supercapacitors 
are described by relations using fractional-order integral or differential 
equations. A simple fractional-order supercapacitor model has been assumed for 
the analysis. It takes into account the supercapacitor internal equivalent series 
resistance ESR (RC) too. The solution of the fractional-order differential 
equation which describes the analyzed circuit has been derived and presented. 
Various cases of the fractional-order parameter α have been examined. The 
derived relations have been illustrated by simulation examples for DC power 
supply of the circuit. The supercapacitor charging time depends largely on the 
value of its fractional-order parameter α. The smaller the value of α is, the longer 
its charging lasts. For α = 1 the transient state is described by a standard first-
order differential equation. 
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