PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the use of Mohand integral transform for solving fractional-order classical Caputo differential equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research study, a newly devised integral transform called the Mohand transform has been used to find the exact solutions of fractional-order ordinary differential equations under the Caputo type operator. This transform technique has successfully been employed in existing literature to solve classical ordinary differential equations. Here, a few significant and practically-used differential equations of the fractional type, particularly related with kinetic reactions from chemical engineering, are under consideration for the possible outcomes via the Mohand integral transform. A new theorem has been proposed whose proof, provided in the present study, helped to get the exact solutions of the models under investigation. Upon comparison, the obtained results would agree with results produced by other existing well-known integral transforms including Laplace, Fourier, Mellin, Natural, Sumudu, Elzaki, Shehu and Aboodh.
Rocznik
Strony
99--109
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology Jamshoro 76062, Pakistan
  • Department of Computer Engineering, Biruni University Istanbul, Turkey
  • Department of Mathematics, Federal University Dutse, Science Faculty, 7156 Jigawa, Nigeria
autor
  • Department of Chemical Engineering, Mehran University of Engineering and Technology Jamshoro 76062, Pakistan
Bibliografia
  • [1] Qureshi, S., & Yusuf, A. (2019). Modeling chickenpox disease with fractional derivatives: From Caputo to Atangana-Baleanu. Chaos, Solitons & Fractals, 122, 111-118.
  • [2] Qureshi, S., & Yusuf, A. (2019). Fractional derivatives applied to MSEIR problems: Comparative study with real world data. The European Physical Journal Plus, 134(4), 171.
  • [3] Yusuf, A., Qureshi, S., Inc, M., Aliyu, A.I., Baleanu, D., & Shaikh, A.A. (2018). Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(12), 123121.
  • [4] G´omez-Aguilar, J.F., Atangana, A., & Morales-Delgado, V.F. (2017). Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives. International Journal of Circuit Theory and Applications, 45(11), 1514-1533.
  • [5] Qureshi, S., & Memon, Z.U.N. (2019). Monotonically decreasing behavior of measles epidemic well captured by Atangana-Baleanu-Caputo fractional operator under real measles data of Pakistan. Chaos, Solitons & Fractals, 131, 109478.
  • [6] He, J.H., Li, Z.B., & Wang, Q.L. (2016). A new fractional derivative and its application to explanation of polar bear hairs. Journal of King Saud University-Science, 28(2), 190-192.
  • [7] Qureshi, S., Rangaig, N.A., & Baleanu, D. (2019). New numerical aspects of Caputo-Fabrizio fractional derivative operator. Mathematics, 7(4), 374.
  • [8] Khan, N.A., Khan, N.U., Ara, A., & Jamil, M. (2012). Approximate analytical solutions of fractional reaction-diffusion equations. Journal of King Saud University-Science, 24(2), 111-118.
  • [9] Atangana, A., & Qureshi, S. (2019). Modeling attractors of chaotic dynamical systems with fractal–fractional operators. Chaos, Solitons & Fractals, 123, 320-337.
  • [10] Gambo, Y.Y., Ameen, R., Jarad, F., & Abdeljawad, T. (2018). Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives. Advances in Difference Equations, 2018(1), 1-13.
  • [11] Jarad, F., & Abdeljawad, T. (2019). Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems-S, 709.
  • [12] Acay, B., Bas, E., & Abdeljawad, T. (2020). Non-local fractional calculus from different viewpoint generated by truncated M-derivative. Journal of Computational and Applied Mathematics, 366, 112410.
  • [13] Abdeljawad, T. (2019). Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(2), 023102.
  • [14] Gambo, Y.Y., Jarad, F., Baleanu, D., & Abdeljawad, T. (2014). On Caputo modification of the Hadamard fractional derivatives. Advances in Difference Equations, 2014(1), 10.
  • [15] Ullah, S., Khan, M.A., & Farooq, M. (2018). A fractional model for the dynamics of TB virus. Chaos, Solitons & Fractals, 116, 63-71.
  • [16] Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M., & Baleanu, D. (2019). Fractional modeling of blood ethanol concentration system with real data application. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(1), 013143.
  • [17] Podlubny, I. (1999). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 1999.
  • [18] Mohand, M., & Mahgoub, A. (2017). The new integral transform “Mohand Transform”. Advances in Theoretical and Applied Mathematics, 12(2), 113-120.
  • [19] Aggarwal, S., Sharma, N., & Chauhan, R. (2018). Solution of linear volterra integral equations of second kind using Mohand transform. International Journal of Research in Advent Technology, 6(11), 3098-3102.
  • [20] Sudhanshu, A., Nidhi, S., & Raman, C. (2018). Solution of population growth and decay problems by using Mohand transform. International Journal of Research in Advent Technology, 6(11), 3277-3282.
  • [21] Aggarwal, S., & Chauhan, R. (2019). A comparative study of Mohand and Aboodh transforms. International Journal of Research in Advent Technology, 7(1), 520-529.
  • [22] Aggarwal, S. (2019). A comparative study of Mohand and Mahgoub transforms. Stat., 4(1), 1-7.
  • [23] Aggarwal, S., Sharma, S.D., & Gupta, A.R. (2019). A new application of Mohand transform for handling Abel’s integral equation. Journal of Emerging Technologies and Innovative Research, 6(3), 600-608.
  • [24] Aggarwal, S., & Chaudhary, R. (2019). A comparative study of Mohand and Laplace transforms. Journal of Emerging Technologies and Innovative Research, 6(2), 230-240.
  • [25] Aziz, S., Jalal, F., Nawaz, M., Niaz, B., Shah, F.A., Memon, M.H.U.R., & Rajoka, M.I. (2011). Hyperproduction and thermal characterization of a novel invertase from a double mutant derivative of Kluyveromyces marxianus. Food Technology and Biotechnology, 49(4), 465.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d093e43a-8f56-431b-bf58-bb56642bc82e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.