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Abstract. In this research study, a newly devised integral transform called the Mohand
transform has been used to find the exact solutions of fractional-order ordinary differential
equations under the Caputo type operator. This transform technique has successfully been
employed in existing literature to solve classical ordinary differential equations. Here,
a few significant and practically-used differential equations of the fractional type, partic-
ularly related with kinetic reactions from chemical engineering, are under consideration
for the possible outcomes via the Mohand integral transform. A new theorem has been
proposed whose proof, provided in the present study, helped to get the exact solutions of the
models under investigation. Upon comparison, the obtained results would agree with results
produced by other existing well-known integral transforms including Laplace, Fourier,
Mellin, Natural, Sumudu, Elzaki, Shehu and Aboodh.
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1. Introduction

The area of fractional calculus has currently become a burning area of study due
to its numerous applications in almost every field of science, engineering and finance.
Whether it be quantum mechanics, fluid dynamics, bio-medical, epidemiology, clini-
cal biochemistry, chemical kinetics, statistical field theory, continuous random fields,
electromagnetism, groundwater study, aerospace engineering, actuaries and many
more as can be seen in recently conducted research studies [1-14] and most of the
references cited therein.



100 S. Qureshi, A. Yusuf, S. Aziz

Classical calculus or integer-order derivatives and integration has some limitations
wherein the major limitation comes from locality of the operators used in this type of
calculus. By locality, we mean that the future state of any physical or natural system
under investigation depends only on its current state. On the other hand, fractional-
-order operators take into account the entire history of the systems’ behavior to
predict its future, thereby having non-locality embedded in the very nature of such
operators. Thus, the classical calculus is not suitable in situations where mathemati-
cal models follow non-Markovian behavior.

The non-locality characteristic is an excellent approach for modeling various phys-
ical and natural phenomena and realities since most of the models of this type are
memory affected and need careful treatment with these non-local operators to get
more accurate and realistic results, and thus the non-Markovian nature is easily cap-
tured. Indeed, this has been proved in most recently-published works such as mod-
eling, with the help of real data, of epidemiogical tuberculosis virus infection with
the classical Caputo [15] is proved to have more accurate results than the existing
classical model which depends solely upon first order ordinary differential equa-
tions. Again, with the help of real data application, the fractional-order version of
the mathematical model of blood ethanol concentration is found to be much better
than the classical one [16]. However, non-locality poses a great challenge to numeri-
cal analysts to design codes having computational effectiveness in terms of both time
complexity and machine memory.

The natural occurrence of such memory dependent and hereditary properties in
many mathematical models motivated various scientists to design methods to get
their exact and approximate solutions. As far as exact solutions are concerned, the
most commonly-used integral transform called the Laplace transform plays a vital
role to solve fractional-order initial value problems. Some others include Fourier,
Mellin, Sumudu, Natural, Shehu, Elzaki and Aboodh.

The ubiquity of fractional-order models in many fields and emergence of new
effective integral transforms led us to try our hands on some existing problems of
practical importance. In this connection, an integral transform called the Mohand
transform has been applied in the present study to find exact solutions of fractional-
-order initial value problems under the classical Caputo fractional-order derivative
operator.

2. Mathematical preliminaries

In this section, some basic concepts related to the Caputo fractional calculus are
listed which are considered necessary to revisit for the convenience of the reader.

Definition 1 [17] The Riemann-Liouville o-integral of arbitrary real order o > 0 of
a function g(¢) is defined by the following integral equation:
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J&s(r) = F(la) /O (= v)® L g(v)dv, 1 > 0.

Definition 2 [17] The fractional-order derivative of g(¢) under the classical Caputo
definition with & > 0 is given by

1 t
) / (t—v)"" % g (V)dv, 1 >0,m—1< o <m, meN.
0

CDg,zg(f) = m
(1

If oo = 1, the Caputo non-integer order derivative reduces to the ordinary first order
derivative from the classical calculus.

Definition 3 [18] Let g(7) be piece-wise defined, of exponential order P and belong
to the set A by:
i

A={g(t):3P,ap,a; > 0,|g(t)| < Pexp (a—) whent € (—1)' x [0,0)}, (2)

then the Mohand integral transform for the function g(z) is defined as follows:

_ _2[7 _
M () =) = [ g)exp(—sr)ar 3)
where t > 0, s € [ag,ay]. O

Lemma 1 [17] The relation between the fractional-order classical Caputo deriva-
tive operator and the Riemann-Liouville o-integral is defined by the following:

CD&rg(f):Jgfz_a@mg(f)), (m—No<meZ". (4)

3. Research methodology

This section is devoted to the discussion of the steps taken into the direction of
solving fractional-order initial value problems under the classical Caputo fractional-
-order derivative operator. In order to serve the purpose, an integral transform tech-
nique (so far not tested on such problems in literature) called the Mohand transform
has been employed.

The Mohand transform was first introduced in [18] and later further explored
in [19]. Its physical applications are also explained in [20] in connection with the
classical mathematical models which depend upon first order linear ordinary differ-
ential equations. This integral transform determines the exact solution of fractional-
-order problems with the help of a new theorem that was proposed and proved in the
present research study.
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Comparison with some well-known existing integral transforms (Laplace, Fourier,
Mellin, Sumudu, Natural, Elzaki, Aboodh) can be carried out in order to be sure about
the exact solutions obtained in the current work. The Mohand integral transform is
defined by the equation (3) and will be used throughout the present research work.

3.1. Basic properties of the Mohand transform
Some of the basic properties of the Mohand transform are listed below [21-24]
which are necessary to be revisited to comprehend the rest of the analysis.

Linearity

The linearity property of the Mohand integral transform states that

M
kig1(t) £kaga(t) <= ki1Gi(s) £k2Ga(s) ®)
Shifting Theorem
If M(g(7)) = G(s), when s > k then,
M(exp(kt)g(t)) — $2G(s — k). ©6)
Powers of ¢
If g(t) =X, when s > k and k+ 1 > 0 then,
I'(k+1
MQg:—%%l. (7
s
Exponentials

If g(¢) = exp(kt), when s > k then,

)
M(exp(kt)) - ®)
G —
Circular and Hyperbolic Functions
. 52 $3
M(sm(kt)) = el M(cos(kt)) = o p el
2 3 ©)
N — Order Derivative
If M(g(¢)) = G(s), then,
d"v(t n=1,0i) (0
M( ﬂ)>:ﬂG@}— Y70 e, (10)
dm ? S_]—I’l—l

N""— Order Integral
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If M(g(1)) = G(s), then,
M(I"(z)) - e, (11)

s
t t
where I" (1) = / / y(t)(dt)", and n € N.
0 0

The last two properties will assist us in proving a theorem stated as:

Theorem 1 Let M (g(t)) = G(s) be the Mohand transform of a piece-wise contin-
uous and exponential order function g(t). The Mohand transform for the fractional-
-order derivative of the function g(t) under the classical Caputo fractional-order
derivative operator of order o > 0 is devised as:

C n=1 (/) (0
M( Dgi,y(r)) = 5%G(s)— Y syjo([)l (12)
j=0

PROOF In order to get the proof for the existence of the above relation, we use
the lemma 1 defined above. Using this lemma, we obtain

Dg,g(t) = Iy, @ (D"g(t)), neN,a>0. (13)
Further, suppose that D"y(t) = h(t) exists and belongs to C"(0,0). Then
DE,g(t) = I, (h(t)), neN, a>0. (14)
Taking the Mohand transform on both sides, we obtain
M(CD&,g(t)> =M (U7 (h() ). (15)

Now, using the Mohand transform for integer-order integrals, one can obtain
the following

M(CD&tg(t)> - snfaM(h(z)). (16)

Further, upon using the Mohand transform of integer-order derivatives, we obtain

n1,0)
m(Dge) =L <s"G<s> -y (O))

Jj—n—1
i

. 17)
n—1 y(J)(o)

Jj—o—1"
0

M(CD(‘ity(t)> = 5%G(s) —

With this, we complete the proof to obtain the Mohand integral transform for
the fractional-order derivatives under the classical Caputo fractional-order derivative
operator. m
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4. Results and discussion

In this part of the section, we employ the Mohand integral transform technique
to solve some practically important linear fractional-order initial value problems
under Caputo’s type fractional-order derivative operator. In this connection, the above-
-proposed theorem will be used to serve the purpose of the present study.

Example 1 Consider the following Bagley-Torvik type in-homogeneous fractional-
-order initial value problem under the classical Caputo’s type fractional-order deriva-
tive operator:

) e (410

dr? dr®
The Bagley-Torvik fractional-order differential equation is substantial in various fields
of applied sciences as it is capable enough to well describe the behavior of real ma-
terials. The 3/2 — fractional-order equation, such as the one given above, is used to
model the frequency dependent damping materials. The motion of both real physical
systems and rigid bodies immersed in Newtonian fluid can be described by this type
of fractional-order equation. We apply the Mohand integral transform on both sides
of Eq. (18) to obtain the following

M(de(’)>+M<C<day(’)>> +M(y(0)) =M(1+1) (19)

)y =1+130)=yY(O) =1, a=15  (18)

dr? dr®
Employing the Mohand integral transform for the classical (10) and fractional-order
derivatives (12) of a function, one obtains the following

1 1 1 1
2Y (s) — (sj + Fz) 45V (s) - (W + ﬁ) +Y(s)=s+1.  (20)

We have chosen n = 2 as the given value of @ € (1,2). Further simplification of the
above step yields the following

Y(s)(s®*+5°4+1) =5+ + 5T 4 5% 4541 (21)

Y(s)=1+s. (22)
Finally, application of the inverse Mohand integral transform gives
y(1) =t+1. (23)

Example 2 A first order rate equation is a reaction that depends on the concentration
of only one reactant considering other reactants (if present) of order zero. The rate
law of such an equation is formulated as

d

E[CS(Z)] = —k[Cs(?)]. (24)
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Fractionalizing the above equation under the Caputo type fractional derivative oper-
ator, one obtains

(22 1cs(0]) = —#7(C5(0), @5)

where the initial concentration is given as Cs(0) = ap > 0. Using the Mohand integral
transform on both sides, one obtains
M[Cs(l)](sa +ka) — aosHO‘ =0,
s* (26)
M[Cs(1)] = aps* ————.
[Cs(0)] = aos S(s* + ko)

Upon using the inverse Mohand integral transform, one obtains

[Cs(t)] = apEq(—k%t?), 27
where Ey(-) is the one-parameter Mittag-Leffler function defined to be Ey(z) =
ad 2 .
= —— . In the above settings, let us suppose that |{Cs(z)|(¢) be the concen-
j;)l“((ijrl) g pp [Cs(1)](7)

tration of alcohol in the stomach of a human body at any time ¢ (in minutes) whose
solution from [] is obtained in Table 1.

Table 1. Concentration of alcohol in the stomach under classical (o = 1) case

Time [min] 0 10 20 30 45
[Cs] [mg/l]  261.7210  85.4404 27.8925 9.1057 1.6984
Time [min] 80 90 110 170 -

[Cs] [mg/1] 0.0338 0.0110 0.0012  0.0000 -

Where the initial concentration of alcohol in the stomach and the rate constant are
respectively given as ap = 261.7210 and k = 0.111946. These values are computed
for the classical version of the model, that is, when a = 1. In order to compute
the best values for these parameters for the fractional-order version of the rate law
equation under the Caputo type fractional-order derivative operator, we have used
the optimization technique thereby getting agp = 991.085 and k = 0.0287362.

Further, it can be observed from Table 2 that the concentration of alcohol in the
stomach of a human body takes a substantially long time period to vanish for smaller
values of the fractional-order parameter «. This situation conforms the practical
experience in real life cases where it is commonly observed to be the same behavior
that is clearly depicted by the fractional-order model of first order rate equation in the
chemical reactions theory.

It has been observed from Table 2 that the fractional-order parameter « is in-
versely proportional to the amount of concentration of alcohol when time moves from
0 to 170 minutes leading the concentration to be continuously decreasing. The ma-
jor reason for non-vanishing behavior of a concentration of alcohol in the fractional-
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-order sense is due to the fact that the initially, alcohol enters into the bloodstream
wherein 20% of it is absorbed in the stomach whereas the remaining goes in the small
intestine with a negligible amount being absorbed in rest of the digestive tract thereby
taking a long time period to be completely eliminated from a human’s stomach [25].
This peculiar behavior is well captured with the help of fractional-order parameter o
taken into consideration in this particular example thus revealing the practical impor-
tance of fractional calculus over the existing classical one.

Table 2. Behavior of concentration of alcohol in the stomach under varying values of ¢

t a=0.5 a=0.6 a=0.7 oa=0.8 a=0.9 a=0.95

0 9.9109E+02 | 9.9109E+02 | 9.9109E+02 | 9.9109E+02 | 9.9109E+02 | 9.9109E+02
10 | 5.9233E+02 | 6.1843E+02 | 6.4729E+02 | 6.7840E+02 | 7.1085E+02 | 7.2724E+02
20 | 4.9948E+02 | 5.0451E+02 | 5.1234E+02 | 5.2357E+02 | 5.3869E+02 | 5.4777E+02
30 | 4.4395E+02 | 4.3494E+02 | 4.2717E+02 | 4.2130E+02 | 4.1812E+02 | 4.1782E+02
45 | 3.8932E+02 | 3.6665E+02 | 3.4336E+02 | 3.1955E+02 | 2.9556E+02 | 2.8366E+02
80 | 3.1611E+02 | 2.7746E+02 | 2.3705E+02 | 1.9438E+02 | 1.4879E+02 | 1.2465E+02
90 | 3.0202E+02 | 2.6084E+02 | 2.1808E+02 | 1.7325E+02 | 1.2572E+02 | 1.0068E+02
110 | 2.7885E+02 | 2.3403E+02 | 1.8829E+02 | 1.4133E+02 | 9.2763E+01 | 6.7704E+01
170 | 2.3256E+02 | 1.8284E+02 | 1.3489E+02 | 8.9224E+01 | 4.6480E+01 | 2.6454E+01

Example 3 Consider a chemical reaction A & B carried out in a batch reactor.
The governing system of differential equations for this type of experimental study
is formulated as follows:

d

57 [Ca(0)] = —k[Ca (1)),

! (28)
—|C(t)] = k|Ca(2)].

= [Co(0)] = KCo(1)]
The initial concentration for the species A is found to be C4(0) = 1 mol/m® and for B

is Cp(0) = 0 mol/m® with the rate constant k [s~1]. o

Fractionalizing the above equation under the Caputo type fractional-order deriva-
tive operator, one obtains

C(jt (CA0)]) = —K“ICa(0) (29)
C(aese)) =K Calo).

Using the similar steps as in the previous example, one obtains

[Ca(t)] = Eo(—k%1%),

[C(t)] = 1 = Ea(—k"1%). (30)
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Table 3. Concentration of the species A under varying values of o with k =1 s !

t a=0.5 a=0.6 a=0.7 a=0.8 a=0.9 a=1.0
0 1.0000E+00 | 1.0000E+00 | 1.0000E+00 | 1.0000E+00 | 1.0000E+00 | 1.0000E+00
20 1.2321E-01 | 7.8378E-02 | 4.5195E-02 | 2.2381E-02 | 8.0369E-03 | 2.0612E-09
40 | 8.8131E-02 | 5.1066E-02 | 2.6840E-02 | 1.2185E-02 | 4.0489E-03 | 1.3035E-17
60 | 7.2244E-02 | 3.9780E-02 | 1.9913E-02 | 8.6412E-03 | 2.7549E-03 | 5.4777E-18
80 | 6.2691E-02 | 3.3339E-02 | 1.6148E-02 | 6.7953E-03 | 2.1049E-03 | 5.0963E-18
100 | 5.6141E-02 | 2.9079E-02 | 1.3739E-02 | 5.6483E-03 | 1.7114E-03 | 4.1703E-18
120 | 5.1291E-02 | 2.6012E-02 | 1.2047E-02 | 4.8604E-03 | 1.4464E-03 | 4.7434E-18
140 | 4.7514E-02 | 2.3675E-02 | 1.0784E-02 | 4.2826E-03 | 1.2552E-03 | 1.9682E-18
160 | 4.4465E-02 | 2.1824E-02 | 9.7994E-03 | 3.8392E-03 | 1.1106E-03 | 1.1778E-18
180 | 4.1936E-02 | 2.0313E-02 | 9.0075E-03 | 3.4870E-03 | 9.9708E-04 | 1.3570E-18
200 | 3.9795E-02 | 1.9051E-02 | 8.3545E-03 | 3.2000E-03 | 9.0558E-04 | 1.4773E-18
Table 4. Concentration of the species B under varying values of o with k =1 s !
t a=0.5 a=0.6 a=0.7 a=0.8 a=09 a=1.0
0 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
20 | 8.7679E-01 | 9.2162E-01 | 9.5480E-01 | 9.7762E-O01 | 9.9196E-01 | 1.0000E+00
40 | 9.1187E-01 | 9.4893E-01 | 9.7316E-01 | 9.8782E-01 | 9.9595E-O1 | 1.0000E+00
60 | 9.2776E-01 | 9.6022E-01 | 9.8009E-01 | 9.9136E-01 | 9.9725E-01 | 1.0000E+00
80 | 9.3731E-01 | 9.6666E-01 | 9.8385E-01 | 9.9320E-O1 | 9.9790E-01 | 1.0000E+00
100 | 9.4386E-01 | 9.7092E-01 | 9.8626E-O1 | 9.9435E-01 | 9.9829E-01 | 1.0000E+00
120 | 9.4871E-01 | 9.7399E-01 | 9.8795E-01 | 9.9514E-01 | 9.9855E-01 | 1.0000E+00
140 | 9.5249E-01 | 9.7632E-01 | 9.8922E-O1 | 9.9572E-01 | 9.9874E-01 | 1.0000E+00
160 | 9.5553E-01 | 9.7818E-01 | 9.9020E-01 | 9.9616E-01 | 9.9889E-01 | 1.0000E+00
180 | 9.5806E-01 | 9.7969E-01 | 9.9099E-01 | 9.9651E-01 | 9.9900E-01 | 1.0000E+00
200 | 9.6020E-01 | 9.8095E-01 | 9.9165E-01 | 9.9680E-O1 | 9.9909E-01 | 1.0000E+00

From the obtained data shown in Tables 3 and 4, it is once again observed that
the fractional-order parameter & gives us an infinite number of degrees of freedom
to know about the behavior of concentration of the species A and B. The value of o
when taken within the interval ]0,0.9] does not cause the concentration to be com-
pletely emptied, but when o > 0.9, we observe a rapid decrease in the concentration.

In this way, the effects taking place within the chemical reaction during process of
production are obtained with the help of fractional-order non-local operators. Thus,
memory effects associated with the governing equations in the chemical reaction (28)
are well captured.

5. Conclusion

This research work is about using a recently devised integral transform called
the Mohand integral transform for solving fractional-order initial value problems un-
der the Caputo type fractional-order derivative operator. In the existing literature,
this transform has so far been used to solve only integer-order differential equations
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whereas, in the present work, we use it for some practically significant fractional-
-order mathematical models mostly related to kinetic reactions from the chemical
engineering field.

With the help of a theorem proposed and thoroughly derived in the present
research work, the fractional-order models under investigation were made possible
to be solved exactly, and their required exact solutions were obtained. Fractional-
-order models revealed a Non-Markovian nature for o € (0, 1) and follow the Marko-
vian process when o = 1. This type of hereditary nature of non-local operators
revealed some interesting insights about the behavior of the models under investi-
gation, and we could conclude that kinetic rate equations are heavily dependent upon
the fractional-order parameter & to produce meaningful results.
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