PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis of ultra-high and steep reinforced soil fills slopes based on strength reduction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research focuses on solving the important problem of slope stability in the field of civil engineering. The study adopted an advanced strength double reduction coefficient method for slope stability analysis, which considers the different influence weights of cohesion and internal friction angle, and reduces them with different reduction coefficients to describe the stability of the slope. The simulation experiment results indicate that the attenuation degree of cohesion and internal friction angle affects slope stability. When the reduction coefficient of cohesion increases to 1.737 and the reduction coefficient of internal friction angle increases to 1.201, the slope is prone to instability and failure, and the safety factor of the calculated result is 1.493. Moreover, when the anti-slip pile is set in the middle of the slope (1/2), and the slope is in a critical state, the bending moment and shear force suffered by the anti-slip pile are both maximum, so the reinforcement effect is also the best.
Rocznik
Strony
417--430
Opis fizyczny
Bibliogr. 21 poz., il., tab.
Twórcy
autor
  • School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, China
autor
  • Xuzhou Power Supply Company, Xuzhou, China
autor
  • State Grid Henan Electric Power Company, Zhengzhou, China
autor
  • State Grid Dongying Power Supply Company, Dongying, China
Bibliografia
  • [1] M. Jia, W. Zhu, and C. Xu, “Performance of a 33 m high geogrid reinforced soil embankment without concrete panel”, Geotextiles and Geomembranes, vol. 49, no. 1, pp. 122-129, 2021, doi: 10.1016/j.geotexmem.2020.07.008.
  • [2] X. Zhou, H. Jiang, M. Zhou, and Y. Hu, “Case study: Extension of MSWlandfill with reinforced earth berm”, Waste Management, vol. 164, pp. 37-46, 2023, doi: 10.1016/j.wasman.2023.03.024.
  • [3] Y. Fang, B. Luo, T. Zhao, D. He, B. Jiang, and Q. Liu, “ST-SIGMA: Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting”, CAAI Transactions on Intelligence Technology, vol. 7, no. 4, pp. 744-757, 2022, doi: 10.1049/cit2.12145.
  • [4] W.H. Yuan, K. Liu, W. Zhang, B. Dai, and Y. Wang, “Dynamic modeling of large deformation slope failure using smoothed particle finite element method”, Landslides, vol. 17, pp. 1591-1603, 2020, doi: 10.1007/s10346-020-01375-w.
  • [5] Z. Tao, Y. Shu, X. Yang, Y. Peng, C. Qiang, and H. Zhang, “Physical model test study on shear strength characteristics of slope sliding surface in Nanfen open-pit mine”, International Journal of Mining Science and Technology, vol. 30, no. 3, pp. 421-429, 2020, doi: 10.1016/j.ijmst.2020.05.006.
  • [6] A. Morcioni, T. Apuani, and F. Cecinato, “The role of temperature in the stress-strain evolution of Alpine rockslopes: Thermo-mechanical modelling of the Cimaganda rockslide”, Rock Mechanics and Rock Engineering, vol. 55, no. 4, pp. 2149-2172, 2022, doi: 10.1007/s00603-022-02786-y.
  • [7] J. Wei, Y. Wei, and X. Huang, “A meso-scale study of the influence of particle shape on shear deformation of coarse-grained soil”, Hydrogeology & Engineering Geology, vol. 48, no. 1, pp. 114-122, 2021, doi: 10.16030/j.cnki.issn.1000-3665.202002017.
  • [8] Y. Xiong, B. Fang, J. Zhang, K. Yan, and Y. Zhu, “Subsurface stresses analysis of flexible ball bearing with bendable races in a harmonic reducer by superimposition method”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 236, no. 6, pp. 1244-1259, 2022, doi: 10.1177/13506501211049957.
  • [9] M. Barma and U. M. Modibbo, “Multiobjective mathematical optimization model for municipal solid waste management with economic analysis of reuse/recycling recovered waste materials”, Journal of Computational and Cognitive Engineering, vol. 1, no. 3, pp. 122-137, 2022, doi: 10.47852/bonviewJCCE149145.
  • [10] M. Naeij, H. Ghasemi, D. Ghafarian, and Y. Javanmardi, “Explicit finite element analysis of slope stability by strength reduction”, Geomechanics and Engineering, vol. 26, no. 2, pp. 133-146, 2021, doi: 10.12989/gae.2021.26.2.133.
  • [11] C. Sun, J. Chai, T. Luo, Z. Xu, Y. Qin, X. Yuan, and B. Ma, “Stability charts for pseudostatic stability analysis of rock slopes using the nonlinear Hoek–Brown strength reduction technique”, Advances in Civil Engineering, vol. 2020, no. 3, pp. 1-16, 2020, doi: 10.1155/2020/8841090.
  • [12] S. Sysala, E. Hrubesova, Z. Michalec, and F. Tschuchnigg, “Optimization and variational principles for the shear strength reduction method”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 45, no. 16, pp. 2388-2407, 2021, doi: 10.1002/nag.3270.
  • [13] D.A. Bouzid, “Finite element analysis of a slope stability by incrementally increasing the mobilised principal stress deviator”, Geomechanics and Geoengineering, vol. 17, no. 5, pp. 1554-1574, 2022, doi: 10.1080/17486025.2021.1955157.
  • [14] H. Wen, Z. Yao, W. Hui, Z. Zhao, and P. Jiang, “Soil-Rock slope stability analysis under top loading considering the nonuniformity of rocks”, Advances in Civil Engineering, vol. 2020, art. no. 9575307, 2020, doi: 10.1155/2020/9575307.
  • [15] Y. Hong, Z. Shao, G. Shi, and J. Liu, “Stability and countermeasures for a deposit slope with artificial scarp: Numerical analysis and field monitoring”, Advances in Civil Engineering, vol. 2020, art. no. 8822080, 2020, doi: 10.1155/2020/8822080.
  • [16] W. Chen, D. Li, T. Ma, H. Fu, and Y. Du, “Stability analysis of a slope considering two reinforcement processes”, Geofluids, vol. 2020, art. no. 8828747, 2020, doi: 10.1155/2020/8828747.
  • [17] J. Lopez-Vinielles, P. Ezquerro, J. A. Fernandez-Merodo, et al., “Remote analysis of an open-pit slope failure: Las Cruces case study, Spain”, Landslides, vol. 17, pp. 2173-2188, 2020, doi: 10.1007/s10346-020-01413-7.
  • [18] Y. Que, X. Chen, Y. Chen, Z. Jiang, Y. Qiu, and S. Easa, “Stability analysis of double V-shaped gully embankment: A dimension-reduced calculation method”, Canadian Journal of Civil Engineering, vol. 49, no. 1, pp. 52-63, 2022, doi: 10.1139/cjce-2019-0783.
  • [19] Y. Yang, T. Chen, W. Wu, and H. Zheng, “Modelling the stability of a soil-rock-mixture slope based on the digital image technology and strength reduction numerical manifold method”, Engineering Analysis with Boundary Elements, vol. 126, pp. 45-54, 2021, doi: 10.1016/j.enganabound.2021.02.008.
  • [20] D. Mrówczyński, T. Gajewski, and T. Garbowski, “Application of the generalized nonlinear constitutive law in 2D shear flexible beam structures”, Archives of Civil Engineering, vol. 67, no. 3, pp. 157-176, 2021, doi: 10.24425/ace.2021.138049.
  • [21] S. Lin, H. Zheng, W. Jiang, W. Li, and G. Sun, “Investigation of the excavation of stony soil slopes using the virtual element method”, Engineering Analysis with Boundary Elements, vol. 121, no. 3, pp. 76-90, 2020, doi: 10.1016/j.enganabound.2020.09.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d093b093-d0d8-4bba-99fb-0eb1187bf980
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.