PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advances in friction stir welding of Ti6Al4V alloy complex geometries: T-butt joint with complete penetration

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the friction stir weldability of Ti6Al4V T-joints has been investigated. Its aims are: (i) to study the influence of tool and welding parameters on weld quality, (ii) to assess the joints’ mechanical strength to foresee future applications, and (iii) to characterize Co-based FSW tools’ wear by following the wear during the tests. Welds’ defectivity is studied by cross-section macrographies analysis. Independently from welding parameters and tools, internal voids are avoided, and a suitable weldability window is identified. Microstructure observations have corroborated temperatures below the -transus point even in the nugget zone, guaranteeing joints’ maximum mechanical strengths at 96% and 87% of the base material for UTS and Y, respectively. Contrarily, elongation at break is very low, without reaching 20% of the base material. The failure is linked to section thinning and kissing bond defects at the joints’ corners. Additionally, tool wear proved to be a critical issue while friction stir welding Ti6Al4V. The inner part of the shoulder is the most sensitive to wear. The consequent high wear rate might be a problem for mass production. The work established the pertinence of assembling complex geometries of Ti6Al4V using friction stir welding, considering weld quality and the mechanical strength achieved. However, critical factors such as section thinning, kissing bond, and tool wear must be carefully addressed to avoid joints’ low elongation at break and to guarantee their mechanical strength.
Rocznik
Strony
art. no. e182, 2023
Opis fizyczny
Bibliogr. 33 poz., fot., rys., wykr.
Twórcy
  • Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka, Japan
  • Laboratoire Génie de Production, Université de Toulouse, ENIT, 47 Avenue d’Azereix, Tarbes, France
autor
  • LORTEK Technological Centre, Basque Research and Technology Alliance (BRTA), Arranomendia Kalea 4A, 20240 Ordizia, Spain
  • Laboratoire Génie de Production, Université de Toulouse, ENIT, 47 Avenue d’Azereix, Tarbes, France
  • LORTEK Technological Centre, Basque Research and Technology Alliance (BRTA), Arranomendia Kalea 4A, 20240 Ordizia, Spain
  • Institut de Mécanique et d’Ingénierie, Université de Bordeaux, CNRS, ENSAM, 351 cours de la Libération, Talence, France
Bibliografia
  • 1. Threadgilll PL, Leonard AJ, Shercliff HR, Withers PJ. Friction stir welding of aluminium alloys. Int Mater Rev. 2009;54(2):49–93. https://doi.org/10.1179/174328009X411136.
  • 2. Brassington WDP, Colegrove PA. Alternative friction stir weld- ing technology for Titanium-6Al-4V propellant tanks within the space industry. Sci Technol Weld Join. 2017. https://doi.org/10. 1080/13621718.2016.1236002.
  • 3. Mironov S, Sato YS, Kokawa H. Friction-stir welding and pro- cessing of Ti-6Al-4V titanium alloy: a review. J Mater Sci Technol. 2018;34(1):58–72. https://doi.org/10.1016/j.jmst.2017.10. 018.
  • 4. Edwards PD, Ramulu M. Investigation of microstructure, surface and subsurface characteristics in titanium alloy friction stir welds of varied thicknesses. Sci Technol Weld Join. 2009. https://doi. org/10.1179/136217109X425838.
  • 5. Edwards P, Ramulu M. Peak temperatures during friction stir welding of Ti-6Al-4V. Sci Technol Weld Join. 2010. https://doi. org/10.1179/136217110X12665778348425.
  • 6. Kitamura K, Fujii H, Iwata Y, Sun YS, Morisada Y. Flexible con- trol of the microstructure and mechanical properties of friction stir welded Ti-6Al-4V joints. Mater Des. 2013;46:348–54. https://doi. org/10.1016/j.matdes.2012.10.051.
  • 7. Su J, Wang J, Mishra RS, Xu R, Baumann JA. Microstructure and mechanical properties of a friction stir processed Ti-6Al-4V alloy. Mater Sci Eng A. 2013;573:67–74. https://doi.org/10.1016/j.msea. 2013.02.025.
  • 8. Wu LH, Wang D, Xiao BL, Ma ZY. Microstructural evolution of the thermomechanically affected zone in a Ti-6Al-4V friction stir welded joint. Scripta Mater. 2014;79:17–20. https://doi.org/10. 1016/j.scriptamat.2014.01.017.
  • 9. Fall A, Monajati H, Khodabandeh A, Fesharaki MH, Champliaud H, Jahazi M. Local mechanical properties, microstructure, and microtexture in friction stir welded Ti-6Al-4V alloy. Mater Sci Eng A. 2019;749(September 2018):166–75. https://doi.org/10. 1016/j.msea.2019.01.077.
  • 10. Feistauer EE, Bergmann LA, dos Santos JF. Effect of reverse material flow on the microstructure and performance of friction stir welded T-joints of an Al-Mg alloy. Mater Sci Eng A. 2018;731:454–64. https://doi.org/10.1016/j.msea.2018.06.056.
  • 11. Tavares SMO, Castro RAS, Richter-Trummer V, Vilaça P, Moreira PMGP, De Castro PMST. Friction stir welding of T-joints with dissimilar aluminium alloys: mechanical joint characterisation. Sci Technol Weld Join. 2010;15(4):312–8. https:// doi. org/ 10. 1179/136217109X12562846839114.
  • 12. Zhao Y, Zhou L, Wang Q, Yan K, Zou J. Defects and tensile properties of 6013 aluminum alloy T-joints by friction stir welding. Mater Des. 2014;57:146–55. https://doi.org/10.1016/j.matdes. 2013.12.021.
  • 13. Aghajani Derazkola H, Kordani N, Aghajani Derazkola H. Effects of friction stir welding tool tilt angle on properties of Al-Mg-Si alloy T-joint. CIRP J Manuf Sci Technol. 2021;33:264–76. https:// doi.org/10.1016/j.cirpj.2021.03.015.
  • 14. Su Y, Li W, Liu X, Gao F, Yu Y, Vairis A. Strengthening mecha- nism of friction stir welded alpha titanium alloy specially designed T-joints. J Manuf Process. 2020;55(April):1–12. https://doi.org/ 10.1016/j.jmapro.2020.03.032.
  • 15. Su Y, Li W, Shen J, Fu B, dos Santos JF, Klusemann B, Vairis A. Comparing the local-global deformation mechanism in different friction stir welding sequences of Ti-4Al-0.005B titanium alloy T-joints. Mater Sci Eng A. 2021. https://doi.org/10.1016/j.msea. 2021.141698.
  • 16. Campanella D, Buffa G, Barcellona A, Fratini L. Friction stir welding of Ti6Al4V complex geometries for aeronautical applications: a feasibility study. Procedia Manuf. 2020;50(2019):93–7. https://doi.org/10.1016/j.promfg.2020.08.017.
  • 17. Campanella D, Fratini L. Prediction of phase evolutions dur- ing friction stir welding of Ti-grade 5 T-joints using finite element modeling. Production Eng. 2022. https://doi.org/10.1007/ s11740-022-01136-9.
  • 18. Park S, Hirano S, Imano S, Sato J, Kokawa H, Sato Y, Ishida K, Omori T. US 2013/0240607. US 2013/0240607 A1, 2013.
  • 19. ASTM Standard E8M-04: Standard test methods for tension testing of metallic materials (Metric) (2010).
  • 20. Wang J, Su J, Mishra RS, Xu R, Baumann JA. Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy. Wear. 2014;321:25–32. https://doi.org/10.1016/j.wear.2014.09.010.
  • 21. Rai R, De A, Bhadeshia HKDH, DebRoy T. Review: friction stir welding tools. Sci Technol Weld Join. 2011;16(4):325–42. https:// doi.org/10.1179/1362171811Y.0000000023.
  • 22. Sato Y, Miyake M, Kokawa H, Omori T, Ishida K, Imano S, Park S, Hirano S. Development of a cobalt-based alloy fsw tool for high-softening-temperature materials. In: Friction Stir Welding and Processing VI - Held During the TMS 2011 Annual Meeting and Exhibition. TMS Annual Meeting, pp. 3–9. Minerals, Metals and Materials Society, 2011. https://doi.org/10.1002/9781118062 302.ch1.
  • 23. Park SHC, Nagahama Y, Hirano S, Imano S, Sato Y, Kokawa H, Omori T, Ishida K. Friction stir welding of titanium alloy using a co-based alloy tool. In: 12th World Conference on Titanium 2012.
  • 24. Du S, Liu H, Jiang M, Zhou L, Gao F. The performance of a Co- based alloy tool in the friction stir welding of TA5 alloy. Wear 488-489(August 2021), 204180;2022. https://doi.org/10.1016/j. wear.2021.204180.
  • 25. Sato YS, Takauchi H, Park SHC, Kokawa H. Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Mater Sci Eng A. 2005;405(1–2):333–8. https://doi.org/10.1016/j.msea.2005.06. 008.
  • 26. Zhang Y, Sato YS, Kokawa H, Hwan S, Park C, Hirano S. Micro- structural characteristics and mechanical properties of Ti-6Al-4V friction stir welds. Mater Sci Eng A. 2008;485:448–55. https://doi. org/10.1016/j.msea.2007.08.051.
  • 27. Liu Z, Wang Y, Ji S, Li Z. Effects of intense cooling on microstructure and properties of friction-stir-welded Ti-6Al-4V alloy. Mater Sci Technol. 2018. https://doi.org/10.1080/02670836.2017. 1366739.
  • 28. Yangyang S, Hui C, Zhigang F, Yuecheng D, Zhenhua D, Yanhua G, Lian Z. Study on microstructure and mechanical properties of low cost Ti-Fe-b alloy. MATEC Web Conf. 2020;321:11029. https://doi.org/10.1051/matecconf/202032111029.
  • 29. Qin W, Li J, Liu Y, Kang J, Zhu L, Shu D, Peng P, She D, Meng D, Li Y. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater Lett. 2019;254:116–9. https://doi.org/10.1016/j.matlet.2019.07.058.
  • 30. Avramovic-Cingara G, Saleh CAR, Jain MK, Wilkinson DS. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans A. 2009;40(13):3117–27. https:// doi.org/10.1007/s11661-009-0030-z.
  • 31. Li J, Shen Y, Hou W, Qi Y. Friction stir welding of Ti-6Al-4V alloy: friction tool, microstructure, and mechanical properties. J Manuf Process. 2020;58(August):344–54. https://doi.org/10. 1016/j.jmapro.2020.08.025.
  • 32. Liu HJ, Zhou L, Liu QW. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti-6Al-4V titanium alloy. Mater Des. 2010;31(3):1650–5. https://doi.org/10. 1016/j.matdes.2009.08.025.
  • 33. Raut N, Yakkundi V, Sunnapwar V, Medhi T, Jain VKS. A specific analytical study of friction stir welded Ti-6Al-4V grade 5 alloy: Stir zone microstructure and mechanical properties. J Manuf Process. 2022;76(February):611–23. https://doi.org/10.1016/j. jmapro.2022.02.036.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d08fa4b2-a18a-4045-8b50-9078ec894a77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.