PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing performance and power quality of a double-stage grid-connected PV systems using advanced control techniques and a dual-extended Kalman filter

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poprawa wydajności i jakości energii w dwuetapowych systemach fotowoltaicznych podłączonych do sieci przy użyciu zaawansowanych technik sterowania i podwójnego rozszerzonego filtra Kalmana
Języki publikacji
EN
Abstrakty
EN
Integrating renewable energy, particularly photovoltaic (PV) systems, into the power grid presents challenges for system stability and power quality. This study proposes an innovative approach using fuzzy logic control and Lyapunov stability methods for a double-stage grid connected PV system. A dual extended Kalman filter (DEKF) accurately estimates inverter current, demonstrating improved system stability, robustness against disturbances, and superior transient response compared to conventional PI control. DEKF reduces measurement noise, leading to lower total harmonic distortion (THD) in inverter and grid currents thus improving power quality.
PL
Włączenie energii odnawialnej, w szczególności systemów fotowoltaicznych (PV), do sieci elektroenergetycznej stwarza wyzwania dla stabilności systemu i jakości energii. W niniejszym badaniu zaproponowano innowacyjne podejście wykorzystujące sterowanie logiką rozmytą i metody stabilności Lapunowa dla dwustopniowego systemu fotowoltaicznego podłączonego do sieci. Podwójny rozszerzony filtr Kalmana (DEKF) dokładnie szacuje prąd falownika, wykazując lepszą stabilność systemu, odporność na zakłócenia i doskonałą reakcję na stany przejściowe w porównaniu z konwencjonalnym sterowaniem PI. DEKF redukuje szumy pomiarowe, prowadząc do niższych całkowitych zniekształceń harmonicznych (THD) w prądach falownika i sieci, poprawiając w ten sposób jakość energii.
Rocznik
Strony
44--50
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Laboratory of Electrical Engineering of Constantine (LEEC), RN79, Constantine 25000, Algeria
  • Laboratory of Electrical Engineering of Constantine (LEEC), RN79, Constantine 25000, Algeria
  • National Polytechnic School of Constantine LGEPC-Laboratory, BP 75, A, Nouvelle ville RP, Constantine
  • Laboratory of sustainable development of electrical energy (LDDEE)
Bibliografia
  • [1] M. Morey, N. Gupta, M. M. Garg, and A. Kumar, “A comprehensive review of grid-connected solar photovoltaic system: Architecture, control, and ancillary services,” Renewable Energy Focus, vol. 45, pp. 307–330, 2023. doi: 10.1016/j.ref.2023.04.009.
  • [2] R. Panigrahi, S. K. Mishra, S. C. Srivastava, A. K. Srivastava, and N. N. Schulz, “Grid Integration of Small-Scale Photovoltaic Systems in Secondary Distribution Network—A Review,” IEEE Trans Ind Appl, vol. 56, no. 3, pp. 3178–3195, 2020, doi: 10.1109/TIA.2020.2979789.
  • [3] K. Kumari and A. K. Jain, “Performance Assessment of Three Phase NPC-Based Grid Integrated Single-Stage Solar PV System With Reduced DC Bus Capacitor,” IEEE Transactions on Industrial Electronics, vol. 70, no. 4, pp. 3773–3781, 2023, doi: 10.1109/TIE.2022.3179545.
  • [4] N. Tak, S. K. Chattopadhyay, and C. Chakraborty, “Single Sourced Double-Stage Multilevel Inverter for Grid-Connected Solar PV Systems,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 561–581, 2022, doi: 10.1109/OJIES.2022.3206352.
  • [5] A. Nadeem and A. Hussain, “A comprehensive review of global maximum power point tracking algorithms for photovoltaic systems,” Energy Systems, vol. 14, no. 2, pp. 293–334, 2023, doi: 10.1007/s12667-021-00476-2.
  • [6] I. D. L. Costa, D. I. Brandao, L. M. Junior, M. G. Simões, and L. M. F. Morais, “Analysis of stationary-and synchronous-reference frames for three-phase three-wire grid-connected converter AC current regulators,” Energies (Basel), vol. 14, no. 24, 2021, doi: 10.3390/en14248348.
  • [7] K. Zeb et al., “High-performance and Multi-functional Control of Transformerless Single-phase Smart Inverter for Grid connected PV System,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 6, pp. 1386–1394, Nov. 2021, doi: 10.35833/MPCE.2019.000331.
  • [8] H. I. Alkhammash et al., “Optimization of Proportional Resonant and Proportional Integral Controls Using Particle Swarm Optimization Technique for PV Grid Tied Inverter,” Mathematical Modelling of Engineering Problems, vol. 10, no. 1, pp. 23–30, 2023, doi: 10.18280/MMEP.100103.
  • [9] P. Pydikalva, S. Natarajan, B. Aljafari, K. Balasubramanian, and S. B. Thanikanti, “PV-Fed Micro-Inverter with Battery Storage for Single Phase Grid Applications,” Electric Power Components and Systems, vol. 51, no. 11, pp. 1051–1074, 2023, doi: 10.1080/15325008.2023.2189758.
  • [10] Nur Fairuz Mohamed Yusof, D. Ishak, and M. A. A. M. Zainuri, “Modified PQ and Hysteresis Current Control in Grid Connected Single-Phase Inverter for PV System,” Russian Electrical Engineering, vol. 94, no. 3, pp. 212–221, 2023, doi: 10.3103/S1068371223030136.
  • [11] S. K. Dash and P. K. Ray, “Power quality improvement utilizing PV fed unified power quality conditioner based on UV PI and PR-R controller,” CPSS Transactions on Power Electronics and Applications, vol. 3, no. 3, pp. 243–253, 2018, doi: 10.24295/CPSSTPEA.2018.00024.
  • [12] Z. Yao, Y. Zhang, and X. Hu, “Transformerless Grid Connected PV Inverter Without Common Mode Leakage Current and Shoot-Through Problems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3257–3261, 2020, doi: 10.1109/TCSII.2020.2990447.
  • [13] E. Macit and A. M. Vural, “Modelling and Simulation of 1 MW Grid-Connected PV System Regulated by Sliding Mode Control, Model Predictive Control and PI Control,” Gazi University Journal of Science, vol. 35, no. 4, pp. 1433–1452, 2022, doi: 10.35378/gujs.899799.
  • [14] R. Kadri, J.-P. Gaubert, and G. Champenois, “An Improved Maximum Power Point Tracking for Photovoltaic Grid Connected Inverter Based on Voltage-Oriented Control,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 66–75, 2011, doi: 10.1109/TIE.2010.2044733.
  • [15] S. Ahmad et al., “Direct Power Control Based on Point of Common Coupling Voltage Modulation for Grid-Tied AC Microgrid PV Inverter,” IEEE Access, vol. 10, pp. 109187 109202, 2022, doi: 10.1109/ACCESS.2022.3213939.
  • [16] Y. Singh, B. Singh, and S. Mishra, “Control of Multiple SPV Integrated Parallel Inverters for Microgrid Applications,” IEEE Trans Ind Appl, vol. 59, no. 3, pp. 3700–3712, 2023, doi: 10.1109/TIA.2023.3244531.
  • [17] N. F. Ibrahim, K. Mahmoud, M. Lehtonen, and M. M. F. Darwish, “Comparative Analysis of Three-Phase PV Grid Connected Inverter Current Control Schemes in Unbalanced Grid Conditions,” IEEE Access, vol. 11, pp. 42204–42221, 2023, doi: 10.1109/ACCESS.2023.3270262.
  • [18] V. N. Kumar, N. Babu P., R. Kiranmayi, P. Siano, and G. Panda, “Improved Power Quality in a Solar PV Plant Integrated Utility Grid by Employing a Novel Adaptive Current Regulator,” IEEE Syst J, vol. 14, no. 3, pp. 4308–4319, 2020, doi: 10.1109/JSYST.2019.2958819.
  • [19] M. Sadeghighasami, M. Shafieirad, and I. Zamani, “Robust Output Feedback Controller Design Based on Kalman Filter for Switched Positive Discrete-Time Systems,” Circuits Syst Signal Process, 2023, doi: 10.1007/s00034-023-02398-z.
  • [20] W. Zhu et al., “Using dynamic data reconciliation to improve the performance of PID feedback control systems with Gaussian/non-Gaussian distributed disturbance and measurement noise,” ISA Trans, vol. 137, pp. 544–560, 2023, doi: 10.1016/j.isatra.2023.01.015.
  • [21] N. Vafamand, M. M. Arefi, M. Shafie-Khah, and J. P. S. Catalão, “Adaptive Optimal Control of Faulty Nonlinear DC Microgrids With Constant Power Loads: Dual-Extended Kalman Filter Approach,” IEEE Trans Ind Appl, vol. 59, no. 1, pp. 513 522, 2023, doi: 10.1109/TIA.2022.3206169.
  • [22] D. S. Nair, G. Jagadanand, and S. George, “Torque Estimation using Kalman Filter and Extended Kalman Filter Algorithms for a sensorless Direct Torque Controlled BLDC Motor drive: A Comparative Study,” Journal of Electrical Engineering and Technology, vol. 16, no. 5, pp. 2621–2634, 2021, doi: 10.1007/s42835-021-00793-7.
  • [23] M. P. Belov, A. M. Belov, and N. van Lanh, “Sensorless Vector Control of a Permanent-Magnet Synchronous Motor Based on an Extended Adaptive Kalman Filter,” Russian Electrical Engineering, vol. 93, no. 3, pp. 148–154, 2022, doi: 10.3103/S1068371222030026.
  • [24] E. Moradi and R. Mohseni, “Parameters estimation of linear frequency modulated signal using Kalman filter and its extended versions,” Signal Image Video Process, vol. 17, no. 2, pp. 553–561, 2023, doi: 10.1007/s11760-022-02260-w.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d08f05bd-8220-49e9-9ed5-2a44326c2c49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.