PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-resolution waveform synthesis based on phase-amplitude mapping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With rapid updating of semiconductor technology and continuous development of large-scale integrated circuits, the device under test has higher and higher requirements for the resolution, accuracy, and waveform modulation of the stimulation signal source. The traditional method of creating digital waveforms involves employing direct digital synthesis technology. However, the sampling rate and memory depth easily limit the adjustment range and resolution of its waveform timing parameters, and it is not easy to adjust the internal parameters of the waveform. Therefore, it is essential for modern electronic technology to further improve the programmability of synthesized waveforms under the condition of a limited sampling rate and memory. This paper presents a real-time waveform synthesis method using phase-amplitude mapping. The proposed method allows for arbitrary waveform generation without memory constraints and improved timing resolution. The sampling rate no longer limits the resolution of the device. It offers amplitude, frequency, phase, and pulse-width modulation for the test device. In addition, a low-cost, no-memory, full-phase, parallel waveform synthesizer is realized on the hardware platform of “FPGA+DAC”. Finally, in this paper, the resolution of the synthesized waveforms based on a Xilinx FPGA and a DAC is improved by a factor of 4 compared to the sampling time.
Rocznik
Strony
547--564
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., wzory
Twórcy
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
Bibliografia
  • [1] Bowler, R., Warring, U., Britton, J. W., Sawyer, B. C., & Amini, J. (2013). Arbitrary waveform generator for quantum information processing with trapped ions. Review of Scientific Instruments, 84(3), 033108. https://doi.org/10.1063/1.4795552
  • [2] Lukin, K. A., Zemlyaniy, O. V., Tatyanko, D. N., Lukin, S., & Pascazio, V. (2017). Noise radar design based on FPGA technology: On-board digital waveform generation and real-time correlation processing. 2017 18th International Radar Symposium (IRS), 1-7. https://doi.org/10.23919/IRS.2017.8008223
  • [3] Qin, X., Zhang, W., Wang, L., Zhao, Y., Tong, Y., Rong, X., & Du, J. (2020). An FPGA-Based Hardware Platform for the Control of Spin-Based Quantum Systems. IEEE Transactions on Instrumentation and Measurement, 69(4), 1127-1139. https://doi.org/10.1109/TIM.2019.2910921
  • [4] Sarnago, H., Burdio, J. M., Garcia-Sanchez, T., Mir, L. M., Alvarez-Gariburo, I., & Lucia, O. (2020). GaN-Based Versatile Waveform Generator for Biomedical Applications of Electroporation. IEEE Access, 8, 97196-97203. https://doi.org/10.1109/ACCESS.2020.2996426
  • [5] Veyrac, Y., Rivet, F., Deval, Y., Dallet, D., Garrec, P., & Montigny, R. (2016). A 65-nm CMOS DAC Based on a Differentiating Arbitrary Waveform Generator Architecture for 5G Handset Transmitter. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(1), 104-108. https://doi.org/10.1109/TCSII.2015.2504947
  • [6] Yao, C., Zhang, X., Guo, F., Dong, S., Mi, Y., & Sun, C. (2012). FPGA-Controlled All-Solid-State Nanosecond Pulse Generator for Biological Applications. IEEE Transactions on Plasma Science, 40(8), 2366-2372. https://doi.org/10.1109/TPS.2012.2188908
  • [7] Chen, P.-T., Zeng, F.-Y., Zhang, X.-H., Chung, R.-J., Yang, C.-J., & Huang, K. D. (2020). Composite Sinusoidal Waveform Generated by Direct Digital Synthesis for Healthy Charging of Lithium-Ion Batteries. Energies, 13(4), 814. https://doi.org/10.3390/en13040814
  • [8] Marini, F., Bellato, M., Bergnoli, A., Brugnera, R., dal Corso, F., Corti, D., Dong, J., Garfagnini, A., Giaz, A., Gong, G., Hu, J., Isocrate, R., Jiang, X., Lippi, I., von Sturm, K., Aiello, S., Andronico, G., Antonelli, V., Bandini, W., . . . Votano, L. (2021). FPGA Implementation of an NCO Based CDR for the JUNO Front-End Electronics. IEEE Transactions on Nuclear Science, 68(8), 1952-1960. https://doi.org/10.1109/TNS.2021.3084446
  • [9] Xiao, Y., Chen, Y., Liu, K., Huang, L., & Yang, X. (2019). A Sampling Rate Selecting Algorithm for the Arbitrary Waveform Generator. IEEE Access, 7, 83761-83770. https://doi.org/10.1109/ACCESS.2019.2922989
  • [10] Shao, Y. Z., Zhang, H., & Ge, Y. H. (2013). Design of Signal Generator Based on DDS Technology. Advanced Materials Research, 846-847, 488-492. https://doi.org/10.4028/www.scientific.net/AMR.846-847.488
  • [11] Muanenda, Y., Faralli, S., Oton, C. J., Velha, P., & Di Pasquale, F. D. (2022). Adaptable Pulse Compression in φ-OTDR with Direct Digital Synthesis of Probe Waveforms and Rigorously Defined Nonlinear Chirping. IEEE Photonics Journal, 14(2), 1-10. https://doi.org/10.1109/JPHOT.2022.3152816
  • [12] Samila, A., Hotra, O., & Majewski, J. (2021). Implementation of the Configuration Structure of an Integrated Computational Core of a Pulsed NQR Sensor Based on FPGA. Sensors, 21(15), 6029. https://doi.org/10.3390/s21186029
  • [13] Zhao, W., Tian, S., Guo, G., You, J., Wu, Q., & Liu, K. (2023). An arbitrary waveform synthesis structure with high sampling rate and low spurious. Metrology and Measurement Systems. https://doi.org/10.24425/mms.2022.140027
  • [14] Narayan Sinha, S., Chatterjee, S., & Palani, R. K. (2022). A 2-GHz Two-Tone Direct Digital Frequency Synthesizer. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(12), 5109-5113. https://doi.org/10.1109/TCSII.2022.3202903
  • [15] Liu, H., Fu, Z., Kong, D., Wang, H., & Xiao, Y. (2023). Method of high timing resolution pulse synthesis based on virtual sampling. Metrology and Measurement Systems. https://doi.org/10.24425/mms.2022.140034
  • [16] Sharma, A., Sun, Y., & Simpson, O. (2021). Design and Implementation of a Re-Configurable Versatile Direct Digital Synthesis-Based Pulse Generator. IEEE Transactions on Instrumentation and Measurement, 70, 1-14. https://doi.org/10.1109/TIM.2021.3094240
  • [17] Chen, L., Weng, Q., Chen, J., & Gu, J.-F. (2020). A Novel Amplitude Modulation Architecture via Time-Varying Programmable Metasurface for Wireless Communication Systems. IEEE Access, 8, 75127-75134. https://doi.org/10.1109/ACCESS.2020.2988769
  • [18] Crovetti, P. S. (2021). Spectral characteristics of DDPM streams and their application to all-digital amplitude modulation. Electronics Letters, 57(5), 212-215. https://doi.org/10.1049/ell2.12050
  • [19] Williams, W. D., Herd, M. T., & Cook, E. C. (2020). Pulsed triple frequency modulation for frequency stabilization and control of two lasers to an optical cavity. Review of Scientific Instruments, 91(8), 085116. https://doi.org/10.1063/5.0010085
  • [20] Hati, A., & Nelson, C. W. (2022). A Simple Optimization Method for Generating High-Purity Amplitude and Phase Modulation. IEEE Transactions on Instrumentation and Measurement, 71, 1-9. https://doi.org/10.1109/TIM.2022.3186367
  • [21] Liu, Q., Xu, F., Peng, W., Xia, W., Wu, D., & Luo, J. (2021). A new displacement demodulation algorithm for the phase-modulated self-mixing interferometer based on FPGA. Procedia Computer Science, 183, 379-388. https://doi.org/10.1016/j.procs.2021.02.074
  • [22] Koutroulis, E., Dollas, A., & Kalaitzakis, K. (2006). High-frequency pulse width modulation implementation using FPGA and CPLD ICs. Journal of Systems Architecture, 52(6), 332-344. https://doi.org/10.1016/j.sysarc.2005.09.001
  • [23] Sarker, R., Datta, A., & Debnath, S. (2021). FPGA-Based High-Definition SPWM Generation with Harmonic Mitigation Property for Voltage Source Inverter Applications. IEEE Transactions on Industrial Informatics, 17(2), 1352-1362. https://doi.org/10.1109/TII.2020.2983844
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d08deb80-8d74-4fd2-9c88-1d2001cf86b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.