PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle swarm optimization of a neural network model for predicting the flashover voltage on polluted cap and pin insulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes training an artificial neural network (ANN) by a particle swarm optimization (PSO) technique to predict the flashover voltage of outdoor insulators. The analysis follows a series of real-world tests on high-voltage insulators to form a database for implementing artificial intelligence concepts. These tests are performed in various degrees of artificial contamination (distilled brine). Each contamination level shows the amount of contamination in milliliters per area of the isolator. The acquisition database provides values of flashover voltage corresponding to their electrical conductivity in each isolation zone and different degrees of artificial contamination. The results show that ANN trained by PSO can not only provide better prediction results, but also reduce the amount of computation efforts. It is also a more powerful model because: it does not get stuck in a local optimum. In addition, it also has the advantages of simple logic, simple implementation, and underlying intelligence. Compared to the results obtained by practical tests, the results obtained present that the PSO-ANN technique is very effective to predict flashover of high-voltage polluted insulators.
Czasopismo
Rocznik
Strony
art. no 2022309
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, Faculty of Applied Sciences, University of Ouargla, Road Ghardaia, 30000 Ouargla, Algeria
  • Department of Electrical Engineering, Faculty of Applied Sciences, University of Ouargla, Road Ghardaia, 30000 Ouargla, Algeria
  • Laboratoire de Génie Electrique (LGE), Université de M’sila, M’sila, Algérie
  • Electrical Engineering Department, Faculty of Technology, University of M’sila, M’sila, Algeria
Bibliografia
  • 1. Gencoglu MT, Cebeci M. The pollution flashover on high voltage insulators. Electric Power Systems Research. 2008;78(11):1914-1921. https://doi.org/10.1016/j.epsr.2008.03.019.
  • 2. Benguesmia H, M'ziou N, Boubakeur A. Simulation of the potential and electric field distribution on high voltage insulator using the finite element method. Diagnostyka. 2018;19(2):41-52. https://doi.org/10.29354/diag/86414.
  • 3. Dhahbi-MegricheN, BeroualA, KrahenbuhlL.A new proposal model for flashover of polluted insulators.Journal of Physics D: Applied Physics.1997;30(8):889-894. https://doi.org/10.1088/0022-3727/30/5/022.
  • 4. Benguesmia H, Bakri B, KhadarS, HamritF, M’ziou N. Experimental study of pollution and simulation on insulators using COMSOL® under AC voltage. Diagnostyka. 2019:20(3);21-29. https://doi.org/10.29354/diag/110330.
  • 5. Saurabh G, Karali P, Surjya KP. Particle swarm optimization of a neural network model in a machining process. Indian Academy of Sciences. 2014, 39(3), 533-548. https://doi.org/10.1007/s12046-014-0244-7.
  • 6. Eberhart R, Kennedy J. New optimizer using particle swarm theory. MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995:39-43. https://doi.org/10.1109/MHS.1995.494215.
  • 7. Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics. 2005;19(1):43-53. https://doi.org/10.1016/j.aei.2005.01.004.
  • 8. Zhang C, Shao H. An ANN's evolved by a new evolutionary system and its application. Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).2000;4:3562-3563. https://doi.org/10.1109/CDC.2000.912257.
  • 9. Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation. The 2003 Congress on Evolutionary Computation, 2003. CEC '03. 2003; 2:1425-1430. https://doi.org/10.1109/CEC.2003.1299838.
  • 10. Zhao F, Ren Z, Yu D, Yang Y. Application of an improved particle swarm optimization algorithm for neural network training. 2005 International Conference on Neural Networks and Brain, 2005:1693-1698. https://doi.org/10.1109/ICNNB.2005.1614955.
  • 11. Asokan P, Baskar N, Babu K, Prabhaharan G, Saravanan R. Optimization of surface grinding operations using particle swarm optimization technique. Journal of Manufacturing Science and Engineering. 2005;127(4):885–892. https://doi.org/10.1115/1.2037085.
  • 12. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995,39-43. https://doi.org/10.1109/MHS.1995.494215.
  • 13. Nguyen H, Moayedi H, Foong LK, Al Najjar HAH, Jusoh WAW, Rashi ASA, Jamali J. Optimizing ANN models with PSO for predicting short building seismic response. Engineering with Computers. 2020, 36, 823-837. https://doi.org/10.1007/s00366-019-00733-0.
  • 14. Jahed Armaghani D, Hajihassani M, Tonnizam Mohamad E, Marto A, Noorani SA. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences, 2014, 7, 5383-5396. https://doi.org/10.1007/s12517- 013-1174-0.
  • 15. Gordan B, Jahed Armaghani D, Hajihassani M, Monjezi M. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineerng with Computer. 2016;32:85-97. https://doi.org/10.1007/s00366-015- 0400-7.
  • 16. Yang X, Zhang Y, Yang Y, Lv W. Deterministic and ProbabilisticWind Power Forecasting Based on BiLevel Convolutional Neural Network and Particle Swarm Optimization. Applied Sciiences. 2019;9(9): 1794. https://doi.org/10.3390/app9091794.
  • 17. Thi Le L, Nguyen H, Dou J, Zhou J. A Comparative Study of PSO-ANN, GA-ANN, ICA-ANN, and ABCANN in Estimating the Heating Load of Buildings’ Energy Efficiency for Smart City Planning. Applied Sciences. 2019;9(13):2630. https://doi.org/10.3390/app9132630.
  • 18. Alizamir M, Sobhanardakani S. An artificial neural network-particle swarm optimization (ANN-PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur Journal of Health Sciences. 2018;10(2):e67544. https://doi.org/10.5812/jjhs.67544.
  • 19. Kisi O, AlizamirM, Zounemat-KermaniM.Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Natural Hazards. 2017;87(1):367– 381. https://doi.org/10.1007/s11069-017-2767-9.
  • 20. Chau KW. Application of a PSO-based neural network in analysis of outcomes of construction claims. Automation in Construction. 2007;16(5): 642-646 .https://doi.org/10.1016/j.autcon.2006.11.008.
  • 21. Adamowski J,Chan HF. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology. 2011;407(1-4):28-40. https://doi.org/10.1016/j.jhydrol.2011.06.013.
  • 22. Alizamir M, Sobhanardakani S. Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach. Journal of Advanced in Environmental Health Research. 2016;4(2):68-77. https://doi.org/10.22102/JAEHR.2016.40223.
  • 23. Alizamir M, Sobhanardakani S. A comparison of performance of artificial neural networks for prediction of heavy metals concentration in groundwater resources of toyserkan plain. Avicenna Journal of Environmental Health Engineering. 2017;4:11792. https://doi.org/10.5812/ajehe.11792https://doi.org/
  • 24. Alizamir M, Sobhanardakani S. Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm. Environmental Health Engineering and Management. 2017;4(4):225-31. https://doi.org/10.15171/EHEM.2017.31.
  • 25. Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology. 2011; 396(1-2):128-138. https://doi.org/10.1016/j.jhydrol.2010.11.002.
  • 26. Bourek Y, M’Ziou N, Benguesmia H. Prediction of flashover voltage of high-voltage polluted insulator using artificial intelligence. Transactions on Electrical and Electronic Materials. 2018;19;59-68. https://doi.org/10.1007/s42341-018-0010-3.
  • 27. Benguesmia H, M’Ziou N, Boubakeur, A. Experimental study of pollution effect on the behavior of high voltage insulators under alternative current. Frontiers in Energy. 2021, 15: 213-221 (2021). https://doi.org/10.1007/s11708-017-0479-1.
  • 28. Benguesmia H, M’Ziou N, Boubakeur, A. AC Flashover: An Analysis with Influence of the Pollution, Potential and Electric Field Distribution on High Voltage Insulator. Multiphysics Modelling and Simulation for Systems Design and Monitoring. MMSSD 2014. Applied Condition Monitoring. 2015; 2:269–279. https://doi.org/10.1007/978-3-319-14532-7_28.
  • 29. Bessedik SA, Hadi H. Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimization. Electric Power Systems Research. 2013;104:87-92. https://doi.org/10.1016/j.epsr.2013.06.013.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d087db88-17ac-4858-902d-66730505421a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.