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Summary. In this paper we introduce the spaces of multifunctions
SX,pq and Xpq which correspond with the Sobolev space Wpq and the spa-
ce of multifunctions Xmkc,ϕ,k,Y which correspond with the Orlicz-Sobolev
space W kϕ . We study completeness of them. Also we give some theorems.

UWAGI O PRZESTRZENIACH MULTIFUNKCJI

TYPU SOBOLEVA

Streszczenie. W artykule wprowadzamy przestrzenie multifunkcji SXpq
andXpq, które odpowiadają przestrzeni SobolevaWpq, oraz przestrzeń mul-
tifunkcjiXmkc,ϕ,k,Y , która odpowiada przestrzeni Orlicza-SobolevaW kϕ . Ba-
damy zupełność tych przestrzeni. Podajemy także pewne twierdzenia doty-
czące tych przestrzeni.
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1. Introduction

The notion of differential of multifunction was introduced in many papers
(see [3, Chapter 6, section 7]). In this paper we apply the De Blasi definition of
differential of multifunction from [1], and the Martelli-Vignoli definition from [9].
In the Definition 1 we join the definitions of a derivative of multifunction from
[2,3,5,9]. We introduce the multiderivatives F ′, DαF and DF . We introduce also
the spaces of multifunctions SX,pq,Xpq andXmkc,ϕ,k,Y and we prove completeness
of them. In the Section 3 we generalize some results from [6, 8]. Additionally we
give some theorems. The space Wpq and its applications was presented in [4]. The
aim of this note is to obtain the generalization of the Sobolev space Wpq on the
multifunctions.
We use the definitions and theorems connected with multifunctions from [3].
Let Y be the real Banach space with the norm ‖ · ‖ and θ be the zero in Y .

Let T ⊂ R, let 2Y denote the set all subsets of Y and let

X = {F : T → 2Y : F (t) is nonempty for every t ∈ T }.

For all nonempty and compact A,B ⊂ Y we introduce the famous Hausdorff
distance by

dist(A,B) = max(max
x∈A
min
y∈B
‖x− y‖,max

y∈B
min
x∈A
‖x− y‖).

Denote

Pc(Y ) = {A ⊂ Y : A is nonempty and compact},

Pkc(Y ) = {A ⊂ Y : A is nonempty and convex and compact}.

We define
Xkc = {F ∈ X : F (t) ∈ Pkc(Y ) for a.e. t ∈ T },

Xmkc = {F ∈ Xkc : F is graph measurable}.

(See [3, Chapter 2: Definition 1.1, Theorem 2.4, Proposition 5.3]).
Let B ∈ Pc(Y ). Denote |B| = dist(B, {θ}). Let F ∈ Xmkc. Now we introduce

the function |F | by the formula

|F |(t) = |F (t)| for every t ∈ T.

Let F,G ∈ X, a ∈ R. We define F +G and aF by the formulae

(F +G)(t) = {x+ y : x ∈ F (t), y ∈ G(t)},

(aF )(t) = {ax : x ∈ F (t)}

for every t ∈ T .
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2. On the spaces of differentiable multifunctions

Let now T be open.

Definition 1. We say that F ∈ Xkc is differentiable if there is HF ∈ Xkc such

that for a.e. t ∈ T there is δ > 0 such that

dist(F (t+ h)− hHF (t), F (t)) ¬ |h|A1t (h),

or

dist(F (t+ h), F (t) + hHF (t)) ¬ |h|A2t (h)

for every h ∈ (−δ, δ), where

lim
h→0
A1t (h) = lim

h→0
A2t (h) = 0.

If F is differentiable then we write F ′ = HF and F ′ should be called the
multiderivative of F .
Let F (t) = [0, t] for every t ­ 0 and F (t) = [t, 0] for every t < 0. We have

F ′(t) = [0, 1] for every t ∈ R.
Let p ­ 1, 1

p
+ 1
q
= 1. We define

Xp = {F ∈ Xmkc : |F | ∈ Lp(T,R)},

SX,pq = {F ∈ Xmkc : F ∈ Xp, F is differentiable and F ′ ∈ Xq}.

It is easy to see that Xp is a linear subset of X and SX,pq is a linear subset of Xp.
Let now µ(T ) <∞. For F,G ∈ Xp we define

Dp(F,G) = (
∫

T

(dist(F (t), G(t)))pdt)
1

p .

We easily obtain (see [8, Theorem 4.1 and the proof of Theorem 4.3]).

Theorem 2. The set Xp with the metric Dp is a complete metric space.

For F,G ∈ SX,pq we define

dSX,pq(F,G) = Dp(F,G) +Dq(F
′, G′).
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Theorem 3. The set SX,pq with metric dSX,pq is a complete metric space.

Proof. Let {Fn} be the Cauchy sequence in (SX,pq, dSX,pq ). So {Fn} is the Cauchy
sequence in (Xp, Dp), {F ′n} is the Cauchy sequences in (Xq, Dq).
So there are F ∈ Xp, G ∈ Xq such that Fn → F and F ′n → G, as n→∞. We

must prove that G is a multiderivatives of F . We have for a.e. t ∈ T :
if

dist(Fn(t+ h)− hF ′n, Fn(t)) ¬ |h|A
1
n,t(h),

we have

dist(F (t+ h)− hG(t), F (t)) ¬ dist(F (t+ h)− hG(t), Fn(t+ h)− hF ′n(t))

+ dist(Fn(t+ h)− hF ′n, Fn(t)) + dist(Fn(t), F (t))

¬ dist(F (t+ h), Fn(t+ h)) + |h| dist(F ′n(t), G(t))

+ dist(Fn(t+ h)− hF ′n(t), Fn(t)) + dist(Fn(t), F (t))

¬ dist(F (t+ h), Fn(t+ h)) + |h| dist(G(t), F ′n(t))

+ |h|A1n,t(h) + dist(Fn(t), F (t)) = |h|A
1
t (h),

where
lim
h→0
A1t (h) = 0.

The proof in the second case is analogous. ✷

Let now Y be Hilbert space, T = [0, b]. Let 1 < p, q <∞, 1
p
+ 1
q
= 1. We define

Wpq(T, Y ) = {x ∈ Lp(T, Y ) : x′ ∈ Lq(T, Y )},

where x′ is understood in the sense of vector-valued distribution,

‖x‖Wpq(T,Y ) = (‖x‖
2
Lp(T,Y ) + ‖x

′‖2Lq(T,Y ))
1

2

for every x ∈ Wpq(T, Y ).
Let F ∈ Xp, we define

KF,pq = {fF : fF (t) ∈ F (t), ‖fF (t)‖ = |F (t)| a.e. and fF ∈ Wpq(T, Y )},

Xpq = {F ∈ Xp : KF,pq 6= ∅}.

For F,G ∈ Xpq we define

ρ(F,G) = Dp(F,G) + dist(KF,pq,KG,pq) + ‖|F | − |G|‖Lp(T,R),
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where
dist(KF,pq,KG,pq) =

= max( sup
a∈KF,pq

inf
b∈KG,pq

‖a− b‖Wpq(T,Y ), sup
b∈KG,pq

inf
a∈KF,pq

‖a− b‖Wpq(T,Y )).

We obtain

Theorem 4. The set Xpq with metric ρ is a linear complete metric space.

Proof. Let {Fn} be a Cauchy sequence in (Xpq , ρ). So {Fn} is a Cauchy sequence
in (Xp, Dp) hence there is F ∈ Xp such that Dp(Fn, F ) → 0 as n → ∞. Also
{|Fn|} is a Cauchy sequence in Lp(T,R), so there is a ∈ Lp(T,R) such that
‖|Fn| − a‖Lp(T,R) → 0 as n → ∞. Next there are fFn ∈ KFn,pq such that {fFn}
is the Cauchy sequence in Wpq(T, Y ), so there is h ∈ Wpq(T, Y ) such that ‖fFn −
h‖Wpq(T,Y ) → 0 as n → ∞. Then fFn → h in measure, hence h(t) ∈ F (t) and
‖h(t)‖ = |F (t)| a.e. ✷

3. Generalized Orlicz-Sobolev spaces of

multifunctions

Let now ϕ be a locally integrable, convex ϕ-function, let ϕ fulfils the ∆2
condition and let

inf
t∈T
ϕ(t, 1) > 0.

Let W kϕ(T ) denotes the generalized Orlicz-Sobolev space (see [10, p. 66–68]),
let ‖ · ‖kϕ denotes the norm in W

k
ϕ(T ), ‖ · ‖ϕ denotes the Luksemburg norm in

Lϕ(T ) and Y = R. Let Dax denotes the generalized derivatives of orders a ¬ k of
x ∈W kϕ(T ). Let

Xmkc,ϕ = {F ∈ Xmkc : F (t) = s(t) + r(t)[−1, 1] for every t ∈ T, s, r ∈ Lϕ(T )},

Xmkc,ϕ,k = {F ∈ Xmkc : F (t) = s(t)+ r(t)[−1, 1] for every t ∈ T, s, r ∈ W kϕ(T )}.

It is easy to see that Xmkc,ϕ and Xmkc,ϕ,k are the linear subsets of X and we
will be call Xmkc,ϕ,k the generalized Orlicz-Sobolev space of multifunctions.
If F ∈ Xmkc,ϕ,k, then we define the generalized derivatives of order a ¬ k of

F by
DaF (t) = Das(t) +Dar(t)[−1, 1] for every t ∈ T.
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Let F1, F2 ∈ Xmkc,ϕ,k and

F1(t) = f1(t) + g1(t)[−1, 1], F2(t) = f2(t) + g2(t)[−1, 1]

for every t ∈ T . We define

ρ1(F1, F2) = ‖f1 − f2‖kϕ + ‖g1 − g2‖
k
ϕ.

It is easy to see that ρ1 is the metric in Xmkc,ϕ,k and (Xmkc,ϕ,k, ρ1) is a complete
linear metric space.
Let now Y = Rn. We define

Xmkc,ϕ,Y = {F ∈ Xmkc : |F | ∈ Lϕ(T,R)}.

It is easy to see that Xmkc,ϕ,Y is a linear space. Let F ∈ Xmkc,ϕ,Y we define

KF,ϕ = {fF : fF (t) ∈ F (t) and ‖f(t)‖ = |F (t)| a.e.}.

It is easy to see that if g ∈ KF,ϕ, then g ∈ Lϕ(T, Y ).
We define

Xmkc,ϕ,k,Y = {F ∈ Xmkc,ϕ,Y : |F | ∈W kϕ(T )}.

Let F,G ∈ Xmkc,ϕ,k,Y , we define

ρ2(F,G) = ‖ dist(F (·), G(·))‖ϕ + ‖|F | − |G|‖kϕ + dist(KF,ϕ,KG,ϕ),

where

dist(KF,ϕ,KG,ϕ) = max( sup
a∈KF,ϕ

inf
b∈KG,ϕ

‖a−b‖Lϕ(T,Y ), sup
b∈KG,ϕ

inf
a∈KF,ϕ

‖a−b‖Lϕ(T,Y )).

Theorem 5. (Xmkc,ϕ,k,Y , ρ2) is a complete metric space.

Proof. Let {Fn} be a Cauchy sequence in (Xmkc,ϕ,k,Y , ρ2), then (see [7, Corollary
1]) there is F ∈ Xmkc,ϕ such that

‖ dist(Fn(t), F (t))‖ϕ → 0 as n→∞.

Also
dist(Fn(t), F (t))→ 0 as n→∞

in measure. So there is subsequence {Fnk} of the sequence {Fn} such that

dist(Fnk(t), F (t))→ 0 a.e.
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Also there are fFn ∈ KFn,ϕ such that {fFn} is a Cauchy sequence in L
ϕ(T, Y ), so

there is h ∈ Lϕ(T, Y ) such that

‖fFn − h‖ϕ → 0 as n→∞.

We must prove that h ∈ KF,ϕ and h ∈ W kϕ(T ). It is easy to see that h(t) ∈ F (t)
a.e. because Fn(t) and F (t) are convex and compact. Also we have

dist(F (t), {θ}) ¬ dist(F (t), Fn(t)) + dist(Fn(t), {θ}),

and
dist((Fn(t), {θ}) ¬ dist(Fn(t), F (t)) + dist(F (t), {θ}),

so we have h ∈ KF,ϕ. It is easy to see that |F | ∈W kϕ(T ). ✷

We define
S
ϕ
F = {f ∈ L

ϕ(T, Y ) : f(t) ∈ F (t) a.e.}.

Let F ∈ Xmkc,ϕ,1,Y . By Theorem 3 and Remark 1 from [7] we define the
generalized derivative of F by the formula

DF = {Dx : x ∈ W 1ϕ(T ), x ∈ S
ϕ
F }.

Let F1, F2 ∈ Xmkc,ϕ,1,Y , let S
ϕ
F1
, S
ϕ
F2
6= ∅ and let F (t) = F1(t) + F2(t) for a.e.

t ∈ T . By Theorem 4 and Remark 1 from [7] SϕF1 +S
ϕ
F2
⊂ SϕF , so if DF1, DF2 6= ∅,

then
DF1 +DF2 ⊂ DF.
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