PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plant secondary metabolites as defenses : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plant secondary metabolites have a variety of functions, including mediating relationships between organisms, responding to environmental challenges, and protecting plants against infections, pests, and herbivores. In a similar way, through controlling plant metabolism, plant microbiomes take part in many of the aforementioned processes indirectly or directly. Researchers have discovered that plants may affect their microbiome by secreting a variety of metabolites, and that the microbiome could likewise affect the metabolome of the host plant. Pesticides are agrochemicals that are employed to safeguard humans and plants from numerous illnesses in urban green zones, public health initiatives, and agricultural fields. The careless use of chemical pesticides is destroying our ecology. As a result, it is necessary to investigate environmentally benign alternatives to pathogen management, such as plant-based metabolites. According to literature, plant metabolites have been shown to have the ability to battle plant pathogens. Phenolics, flavonoids, and alkaloids are a few of the secondary metabolites of plants that have been covered in this study.
Wydawca
Rocznik
Tom
Strony
206--211
Opis fizyczny
Bibliogr. 72 poz., rys., tab.
Twórcy
  • Universitas Negeri Gorontalo, Faculty of Sports and Health, Department of Public Health, Jln. Jenderal Sudirman 6, Gorontalo, 96128, Indonesia
  • Universitas Sumatera Utara, DS & CI Research Group, Medan, Indonesia
  • Tashkent Medical Academy, Tashkent, Uzbekistan
  • Kuban State Agrarian University named after I.T. Trubilin, Department of Management, Kuban, Russia
  • Moscow State University of Technologies and Management named after K.G. Razumovsky (First Cossack University), Department of Digital Nutrition, Hotel and Restaurant Services, Moscow, Russia
  • AL-Nisour University College, Department of Medical Laboratories Technology, Baghdad, Iraq
  • College of Dentistry, Al-Ayen University, Thi-Qar, Iraq
  • Al-Mustaqbal University College, Medical Laboratories Techniques Department, Babylon, Hilla, Iraq
  • Saveetha Institute of Medical and Technical Sciences, Chennai, India
Bibliografia
  • ALIEV R.I., KURBANOVA M.N. 2022. Prospects for the development of biotechnology: New directions, distribution and application. AIP Conference Proceedings. Vol. 2390(1), 030001. DOI 10.1063/5.0075804.
  • ANSARI I.A., AKHTAR M.S. 2019. Current insights on the role of terpenoids as anticancer agents: A perspective on cancer prevention and treatment. In: Natural bio-active compounds. Vol. 2. Chemistry, pharmacology and health care practices. Eds. M.K. Swamy, M.S. Akhtar. Singapore. Springer p. 53–80. DOI 10.1007/978-981-13-7205-6_3.
  • BADRI D.V., CHAPARRO J.M., ZHANG R., SHEN Q., VIVANCO J.M. 2013. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds redominantly modulate the soil microbiome. Journal of Biological Chemistry. Vol. 288(7) p. 4502–4512. DOI 10.1074/jbc.M112.433300.
  • BARAK D. 2022. Role of plant metabolites in plant protection and their potential in integrated pest management. The Pharma Innovation. Vol. 11(5) p. 699–704. DOI 10.22271/tpi.2022.v11.i5i.12469.
  • BARTWAL A., MALL R., LOHANI P., GURU S.K., ARORA S. 2013. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation. Vol. 32(1) p. 216–232. DOI 10.1007/s00344-012-9272-x.
  • BASILE A., RIGANO D., LOPPI S., DI SANTI A., NEBBIOSO A., SORBO S., ..., BONTEMPO P. 2015. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. International Journal of Molecular Sciences. Vol. 16(4) p. 7861–7875. DOI 10.3390/ijms16047861.
  • BELAIR M., GRAU A.L., CHONG J., TIAN X., LUO J., GUAN X., PENSEC F. 2022. Pathogenicity factors of botryosphaeriaceae associated with grapevine trunk diseases: New developments on their action on grapevine defense responses. Pathogens. Vol. 11(8), 951. DOI 10.3390/pathogens11080951.
  • BENHAMOU N., KLOEPPER J.W., QUADT-HALLMAN A., TUZUN S. 1996. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology. Vol. 112(3) p. 919–929. DOI 10.1104/pp.112.3.919.
  • BLAŽEVIĆ I., MONTAUT S., BURČUL F., OLSEN C.E., BUROW M., ROLLIN P., AGERBIRK N. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry. Vol. 169, 112100. DOI 10.1016/j.phytochem.2019.112100.
  • BODENHAUSEN N., REYMOND P. 2007. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Molecular Plant-Microbe Interactions®. Vol. 20(11) p. 1406–1420. DOI 10.1094/MPMI-20-11-1406.
  • BRIBI N. 2018. Pharmacological activity of alkaloids: A review. Asian Journal of Botany. Vol. 1 p. 1–6.
  • CHAKRABORTY N., ACHARYA K. 2017. “NO way”! Says the plant to abiotic stress. Plant Gene. Vol. 11 p. 99–105. DOI 10.1016/j.plgene.2017.05.001.
  • CHEYNIER V., COMTE G., DAVIES K.M., LATTANZIO V., MARTENS S. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry. Vol. 72 p. 1–20. DOI 10.1016/j.plaphy.2013.05.009.
  • DIVEKAR P.A., NARAYANA S., DIVEKAR B.A., KUMAR R., GADRATAGI B.G., RAY A., ..., BEHERA T.K. 2022. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences. Vol. 23(5), 2690. DOI 10.3390/ijms23052690.
  • DIXON D.P., SKIPSEY M., EDWARDS R. 2010. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry. Vol. 71(4) p. 338–350. DOI 10.1016/j.phytochem.2009.12.012.
  • GAŁCZYŃSKA M., MAŃKOWSKA N., MILKE J., BUŚKO M. 2019. Possibilities and limitations of using Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water. Journal of Water and Land Development. No. 40. DOI 10.2478/jwld-2019-0018.
  • GALILI G., AMIR R., HOEFGEN R., H ESSE H. 2005. Improving the levels of essential amino acids and sulfur metabolites in plants. Biological Chemistry. Vol. 386(9) p. 817–831. DOI 10.1515/BC.2005.097.
  • GARCIA-MIER L., JIMENEZ-GARCÍA S.N., SALAZAR C.S., CONTRERAS-MEDINA L.M., ESCALANTE K.E., MARTINEZ C.G., GARCÍA-TREJO J.F., GUEVARA-GONZALEZ R.G., FEREGRINO-PEREZ A.A. 2019. Strategies that influence the production of secondary metabolites in plants. In: Nutritional quality improvement in plants concepts and strategies in plant sciences. Eds. P.K. Jaiwal, A.K. Chhillar, D. Chaudhary, R. Jaiwal p. 231–270. Cham. Springer International Publishing. DOI 10.1007/978-3-319-95354-0_9.
  • GOYAL S., LAMBERT C., CLUZET S., MÉRILLON J.M., RAMAWAT K.G. 2012. Secondary metabolites and plant defence. In: Plant defence: Biological control progress in biological control. Eds. J.M. Mérillon, K.G. Ramawat p. 109–138. Dordrecht. Springer Netherlands. DOI 10.1007/978-94-007-1933-0_5.
  • GUO X., WAN Y., SHAKEEL M., WANG D., XIAO L. 2021. Effect of mycorrhizal fungi inoculation on bacterial diversity, community structure and fruit yield of blueberry. Rhizosphere. Vol. 19, 100360. DOI 10.1016/j.rhisph.2021.100360.
  • HADACEK F. 2002. Secondary metabolites as plant traits: Current assessment and future perspectives. Critical Reviews in Plant Sciences. Vol. 21(4) p. 273–322. DOI 10.1080/0735-260291044269.
  • HAMMER T.J., BOWERS M.D. 2015. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia. Vol. 179(1) p. 1–14. DOI 10.1007/s00442-015-3327-1.
  • HAN Y., LIN Z., ZHOU J., YUN G., GUO R., RICHARDSON J.J., CARUSO F. 2020. Polyphenol-mediated assembly of proteins for engineering functional materials. Angewandte Chemie International Edition. Vol. 59(36) p. 15618–15625. DOI 10.1002/anie.202002089.
  • HEDJAL S., ZOUINI D., BENAMARA A. 2018. Hydrochemical assessment of water quality for irrigation: A case study of the wetland complex of Guerbes-Sanhadja, North-East of Algeria. Journal of Water and Land Development. No. 38. DOI 10.2478/jwld-2018-0041.
  • HELMANN T.C., KING D.M., LINDOW S.E. 2022. Differential virulence contributions of the efflux transporter MexAB-OprM in Pseudomonas syringae infecting a variety of host plants. Molecular Plant-Microbe Interactions®. Vol. 35(8) p. 672–680. DOI 10.1094/MPMI-04-21-0099-R.
  • HILDRETH S.B., LITTLETON E.S., CLARK L.C., PULLER G.C., KOJIMA S., WINKEL B.S.J. 2022. Mutations that alter Arabidopsis flavonoid metabolism affect the circadian clock. The Plant Journal. Vol. 110 (4) p. 932–945. DOI 10.1111/tpj.15718.
  • HILLIER S.G., LATHE R. 2019. Terpenes, hormones and life: Isoprene rule revisited. Journal of Endocrinology. Vol. 242(2) p. R9–R22. DOI 10.1530/JOE-19-0084.
  • HUSSEIN R.A., EL-ANSSARY A.A. 2018. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In: Herbal medicine. Ed. P.F. Builders. IntechOpen p. 11–30. DOI 10.5772/intechopen.76139.
  • JAMLOKI A., BHATTACHARYYA M., NAUTIYAL M.C., PATNI B. 2021. Elucidating the relevance of high temperature and elevated CO 2 in plant secondary metabolites (PSMs) production. Heliyon. Vol. 7(8), e07709. DOI 10.1016/j.heliyon.2021.e07709.
  • JUBAIR N., RAJAGOPAL M., CHINNAPPAN S., ABDULLAH N.B., FATIMA A. 2021. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evidence-Based Complementary and Alternative Medicine. Vol. 2021, e3663315. DOI 10.1155/2021/3663315.
  • KEITH R.A., MITCHELL-OLDS T. 2017. Testing the optimal defense hypothesis in nature: Variation for glucosinolate profiles within plants. PLOS ONE. Vol. 12(7), e0180971. DOI 10.1371/journal.pone.0180971.
  • KILGORE M.B., KUTCHAN T.M. 2016. The Amaryllidaceae alkaloids: Biosynthesis and methods for enzyme discovery. Phytochemistry Reviews. Vol. 15(3) p. 317–337. DOI 10.1007/s11101-015-9451-z.
  • KOZA N.A., ADEDAYO A.A., BABALOLA O.O., KAPPO A.P. 2022. Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms. Vol. 10(8), 1528. DOI 10.3390/microorgan-isms10081528.
  • KUHLISCH C., POHNERT G. 2015. Metabolomics in chemical ecology. Natural Product Reports. Vol. 32(7) p. 937–955. DOI 10.1039/C5NP00003C.
  • KWON C., BEDNAREK P., SCHULZE-LEFERT P. 2008. Secretory pathways in plant immune responses. Plant Physiology. Vol. 147(4) p. 1575–1583. DOI 10.1104/pp.108.121566.
  • LE ROY J., HUSS B., CREACH A., HAWKINS S., NEUTELINGS G. 2016. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science. Vol. 7, 735. DOI 10.3389/fpls.2016.00735.
  • LI Y., KONG D., FU Y., SUSSMAN M.R., WU H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry. Vol. 148 p. 80–89. DOI 10.1016/j.plaphy.2020.01.006.
  • LICHMAN B.R. 2021. The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product Reports. Vol. 38(1) p. 103–129. DOI 10.1039/D0NP00031K.
  • MANNIELLO M.D., MORETTA A., SALVIA R., SCIEUZO C., LUCCHETTI D., VOGEL H., SGAMBATO A., FALABELLA P. 2021. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cellular and Molecular Life Sciences. Vol. 78(9) p. 4259–4282. DOI 10.1007/s00018-021-03784-z.
  • MAO G., TIAN Y., SUN Z., OU J., XU H. 2019. Bruceine D isolated from Brucea javanica (L.) Merr. as a systemic feeding deterrent for three major lepidopteran pests. Journal of Agricultural and Food Chemistry. Vol. 67(15) p. 4232–4239. DOI 10.1021/acs.jafc.8b06511.
  • MARSAFARI M., SAMIZADEH H., RABIEI B., MEHRABI A., KOFFAS M., XU P. 2020. Biotechnological production of flavonoids: An update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors. Biotechnology Journal. Vol. 15(8), 1900432. DOI 10.1002/biot.201900432.
  • MICHAEL J.P. 2016. Chapter one – Simple indolizidine and quinolizidine alkaloids. In: The alkaloids: Chemistry and biology. Vol. 75. Ed. H.-J. Knölker. Academic Press. ISBN 9780128034347 pp. 498. DOI 10.1016/bs.alkal.2014.12.001.
  • NELSON A.S., WHITEHEAD S.R. 2021. Fruit secondary metabolites shape seed dispersal effectiveness. Trends in Ecology & Evolution. Vol. 36(12) p. 1113–1123. DOI 10.1016/j.tree.2021.08.005.
  • NINKUU V., ZHANG L., YAN J., FU Z., YANG T., ZENG H. 2021. Biochemistry of terpenes and recent advances in plant protection. International Journal of Molecular Sciences. Vol. 22(11), 5710. DOI 10.3390/ijms22115710.
  • O’MALLEY M.R., ANDERSON J.C. 2021. Regulation of the Pseudomonas syringae type III secretion system by host environment signals. Microorganisms. Vol. 9(6), 1227. DOI 10.3390/microorgan-isms9061227.
  • PANDEY A., PATHAK J., SINGH D.K., AHMED H., SINGH V., KUMAR D., SINHA R.P. 2020. Photoprotective role of UV-screening pigment scytonemin against UV-B-induced damages in the heterocystforming cyanobacterium Nostoc sp. strain HKAR-2. Brazilian Journal of Botany. Vol. 43(1) p. 67–80. DOI 10.1007/s40415-020-00589-5.
  • PIASECKA A., JEDRZEJCZAK-REY N., BEDNAREK P. 2015. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytologist. Vol. 206(3) p. 948–964. DOI 10.1111/nph.13325.
  • PRASANTH C.N., VISWANATHAN R., MALATHI P., SUNDAR A.R. 2022. Carbohydrate active enzymes (CAZy) regulate cellulolytic and pectinolytic enzymes in Colletotrichum falcatum causing red rot in sugarcane. 3 Biotech. Vol. 12(2), 48. DOI 10.1007/s13205-022-03113-6.
  • RAJPUT A., SHARMA R., BHARTI R. 2022. Pharmacological activities and toxicities of alkaloids on human health. Materials Today: Proceedings. Vol. 48 p. 1407–1415. DOI 10.1016/j.matpr. 2021.09.189.
  • RODRIGUES-CORRÊA K.C. DA S., FETT-NETO A.G. 2019. Abiotic stresses and non-protein amino acids in plants. Critical Reviews in Plant Sciences. Vol. 38(5–6) p. 411–430. DOI 10.1080/07352689.2019.1707944.
  • SALEHI B., MISHRA A.P., NIGAM M., SENER B., KILIC M., SHARIFI-RAD M., FOKOU P.V.T., MARTINS N., SHARIFI-RAD J. 2018. Resveratrol: A double-edged sword in health benefits. Biomedicines. Vol. 6 (3), 91. DOI 10.3390/biomedicines6030091.
  • SEPPÄNEN S.-K., SYRJÄLÄ L., VON WEISSENBERG K., TEERI T.H., PAAJANEN L., PAPPINEN A. 2004. Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Reports. Vol. 22(8) p. 584–593. DOI 10.1007/s00299-003-0728-0.
  • SHARMA A., SHARMA S., KUMAR A., KUMAR V., SHARMA A.K. 2022. Plant secondary metabolites: An introduction of their chemistry and biological significance with physicochemical aspect. In: Plant secondary metabolites: Physico-chemical properties and therapeutic applications. Eds. A.K. Sharma, A. Sharma p. 1–45. Singapore. Springer Nature. DOI 10.1007/978-981-16-4779-6_1.
  • SHEAR W.A. 2015. The chemical defenses of millipedes (diplopoda): Biochemistry, physiology and ecology. Biochemical Systematics and Ecology. Vol. 61 p. 78–117. DOI 10.1016/j.bse.2015.04.033.
  • SINGH D., RAINA T.K., KUMAR A., SINGH J., PRASAD R. 2019. Plant microbiome: A reservoir of novel genes and metabolites. Plant Gene. Vol. 18, 100177. DOI 10.1016/j.plgene.2019.100177.
  • STANLEY C.E., GROSSMANN G., SOLVAS X.C. I , DEMELLO A.J. 2016. Soil-on-a-Chip: microfluidic platforms for environmental organismal studies. Lab on a Chip. Vol. 16(2) p. 228–241. DOI 10.1039/C5LC01285F.
  • TIWARI P., SANGWAN R.S., SANGWAN N.S. 2016. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnology Advances. Vol. 34(5) p. 714–739. DOI 10.1016/j.biotechadv.2016.03.006.
  • TSUDA K., KATAGIRI F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology. Vol. 13(4) p. 459–465. DOI 10.1016/j.pbi.2010.04.006.
  • TSUNODA T., KROSSE S., VAN DAM N.M. 2017. Root and shoot glucosinolate allocation patterns follow optimal defence allocation theory. Journal of Ecology. Vol. 105(5) p. 1256–1266. DOI 10.1111/1365-2745.12793.
  • TYŚKIEWICZ R., NOWAK A., OZIMEK E., JAROSZUK-ŚCISEŁ J. 2022. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences. Vol. 23(4), 2329. DOI 10.3390/ijms23042329.
  • UL HAQ S., KHAN A., ALI M., KHATTAK A.M., GAI W.-X., ZHANG H.-X., WEI A.-M., GONG Z.-H. 2019. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences. Vol. 20(21), 5321. DOI 10.3390/ijms20215321.
  • VALETTE M., REY M., GERIN F., COMTE G., WISNIEWSKI-DYÉ F. 2020. A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. Journal of Integrative Plant Biology. Vol. 62(2) p. 228–246. DOI 10.1111/jipb.12810.
  • VELU G., PALANICHAMY V., RAJAN A.P. 2018. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: Bioorganic phase in natural food: An overview. Eds. S.M. Roopan, G. Madhumitha p. 135–156. Cham. Springer International Publishing. DOI 10.1007/978-3-319-74210-6_8.
  • VERMA N., SHUKLA S. 2015. Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants. Vol. 2(4) p. 105–113. DOI 10.1016/j.jarmap.2015.09.002.
  • WAHEED A., HAXIM Y., ISLAM W., KAHAR G., LIU X., ZHANG D. 2022. Role of pathogen’s effectors in understanding host-pathogen interaction. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. Vol. 1869(12), 119347. DOI 10.1016/j.bbamcr. 2022.119347.
  • WANG Z., AN G., ZHU Y., LIU X., CHEN Y., WU H., WANG Y., SHI X., MAO C. 2019. 3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Materials Horizons. Vol. 6(4) p. 733–742. DOI 10.1039/C8MH01208C.
  • WAR A.R., BUHROO A.A., HUSSAIN B., AHMAD T., NAIR R.M., SHARMA H. C. 2020. Plant defense and insect adaptation with reference to secondary metabolites. In: Co-evolution of secondary metabolites reference series in phytochemistry. Eds. J.-M. Mérillon, K.G. Ramawat Cham. Springer International Publishing p. 795–822. DOI 10.1007/978-3-319-96397-6_60.
  • WINK M. 2018. Plant secondary metabolites modulate insect behavior-steps toward addiction? Frontiers in Physiology. Vol. 9, 364. DOI 10.3389/fphys.2018.00364.
  • WU S., SHAN L., HE P. 2014. Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Science. Vol. 228 p. 118–126. DOI 10.1016/j.plantsci.2014.03.001.
  • YANG L., HE J. 2021. Traditional uses, phytochemistry, pharmacology and toxicological aspects of the genus Hosta (Liliaceae): A comprehensive review. Journal of Ethnopharmacology. Vol. 265, 113323. DOI 10.1016/j.jep.2020.113323.
  • YESHI K., CRAYN D., RITMEJERYTĖ E., WANGCHUK P. 2022. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules. Vol. 27(1) p. 313. DOI 10.3390/molecules27010313.
  • ZHANG Y., DENG T., SUN L., LANDIS J.B., MOORE M.J., WANG H., ..., SUN H. 2021. Phylogenetic patterns suggest frequent multiple origins of secondary metabolites across the seed-plant ‘tree of life’. National Science Review. Vol. 8(4), nwaa105. DOI 10.1093/nsr/nwaa105.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0826c17-1a08-4ce2-8372-6e21894aaaea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.