PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green Fabrication of Nanoscale Energetic Molecular Perovskite (H2dabco)[Na(ClO4)3] with Reduced Mechanical Sensitivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-energy-density molecular perovskite energetic materials with high detonation performance have attracted much attention, but poor safety performance has limited their potential applications. In this paper, nano sodium perchlorate-based molecular perovskite (H2dabco)[Na(ClO4)3] (nano DAP-1) was fabricated by green ball-milling technology. The structure and morphology of the samples were characterized and the results showed that nano DAP-1 with nearly spherical morphology has a narrow particle size distribution, < 1 μm. The thermal decomposition properties were investigated by differential scanning calorimetry (DSC). The exothermic peak of nano DAP-1 thermal decomposition was 330.0 °C, a decrease of 51.7 °C compared with that of raw DAP (381.7 °C). The apparent activation energy (Ea) of nano DAP-1 was calculated to be 160.9 kJ·mol–1, which is lower than that of raw DAP-1 (168.6 kJ·mol–1). Mechanical sensitivity studies showed that nano DAP-1 (H50: 64 cm) exhibited a lower impact sensitivity than that of the raw DAP-1 (H50: 51 cm). This work provides a simple and effective way for improving the thermal decomposition properties and safety performance of molecular perovskite energetic materials.
Rocznik
Strony
369--384
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
  • Norinco Group Test and Measuring Academy, Huayin 714200, China
autor
  • School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
Bibliografia
  • [1] Fei, T.; Lv, P.; Liu, Y.; He, C.; Sun, C.; Pang, S. Design and Synthesis of a Series of CL-20 Cocrystals: Six-membered Symmetrical N-heterocyclic Compounds as Effective Coformers. Cryst. Growth Des. 2019, 19(5): 2779-2784.
  • [2] Zhai, L.; Bi, F.; Zhang, J.; Zhang, J.; Li, X.; Wang, B.; Chen, S. 3,4-Bis(3-tetrazolylfuroxan-4-yl) Furoxan: A Linear C-C Bonded Pentaheterocyclic Energetic Material with High Heat of Formation and Superior Performance. ACS Omega 2020, 19(5): 11115-11122.
  • [3] Lu, F.; Dong, Y.; Fei, T.; Liu, J.; Su, H.; Li, S.; Pang, S. Noncovalent Modification of 4,4′-Azo-1,2,4-triazole Backbone via Cocrystallization with Polynitroazoles. Cryst. Growth Des. 2019, 19(12): 7206-7216.
  • [4] Tang, Y.; Huang, W.; Imler, G.H.; Parrish, D.A.; Shreeve, J.N.M. Enforced Planar FOX-7-like Molecules: A Strategy for Thermally Stable and Insensitive π-Conjugated Energetic Materials. J. Am. Chem. Soc. 2020, 142(15): 7153-7160.
  • [5] Liu, W.; Lin, Q.; Yang, Y.; Zhang, X.; Li, Y.; Lin, Z.; Pang, S. Energetic Salts Based on an Oxygen-containing Cation: 2,4-Diamino-1,3,5-triazine-6-one. Chem.-Asian J. 2014, 9(2): 479-486.
  • [6] Liu, L.; Zhang, Y.; Zhang, S.; Fei, T. Heterocyclic Energetic Salts of 4,4’,5,5’-Tetranitro-2,2’-biimidazole. J. Energ. Mater. 2015, 33(3): 202-214.
  • [7] Du, Y.; Su, H.; Fei, T.; Hu, B.; Zhang, J.; Li, S.; Pang, S.; Nie, F. Structure–property Relationship in Energetic Cationic Metal–Organic Frameworks: New Insight for Design of Advanced Energetic Materials. Cryst. Growth Des. 2018, 18(10): 5896-5903.
  • [8] Zhao, C.; Du, Y.; Zhang, J.; Mi, Y.; Su, H.; Fei, T.; Li, S.; Pang, S. Highly Efficient Separation of Anionic Organic Pollutants from Water via Construction of Functional Cationic Metal–Organic Frameworks and Mechanistic Study. ACS Appl. Mater. Inter. 2020, 12(20): 22835-22844.
  • [9] Yang, Z.; Li, H.; Zhou, X.; Zhang, C.; Huang, H.; Li, J.; Nie, F. Characterization and Properties of a Novel Energetic-energetic Cocrystal Explosive Composed of HNIW and BTF. Cryst. Growth Des. 2012, 12(11): 5155-5158.
  • [10] Yang, Z.; Wang, H.; Zhang, J.; Ma, Y.; Tan, Y.; Nie, F.; Zhang, J.; Li, H. Rapid Cocrystallization by Exploiting Differential Solubility: An Efficient and Scalable Process toward Easily Fabricating Energetic Cocrystals. Cryst. Growth Des. 2020, 20(4): 2129-2134.
  • [11] Ruesch, M.D.; Powell, M.S.; Satija, A.; Ruesch, J.P.; Vuppuluri, V.S.; Lucht, R.P.; Son, S.F. Burning Rate and Flame Structure of Cocrystals of CL-20 and a Polycrystalline Composite Crystal of HMX/AP. Combust. Flame 2020, 219: 129-135.
  • [12] Liu, R.; Chen, P.; Zhang, X.; Zhu, S. Non-Shock Ignition Probability of Octahydro-1,3,5,7-Tetranitro-Tetrazocine-Based Polymer Bonded Explosives Based on Microcrack Stochastic Distribution. Propellants Explos. Pyrotech. 2020, 45(4): 568-580.
  • [13] Liu, R.; Wang, X.; Chen, P.; Ge, K.; Zhu, S.; Guo, Y. The Role of Tensioncompression Asymmetrical Microcrack Evolution in the Ignition of Polymerbonded Explosives under Low-velocity Impact. J. Appl. Phys. 2021, 129(17): 175108.
  • [14] Chen, S.; Yang, Z.; Wang, B.; Shang, Y.; Sun, L.; He, C.; Zhou, H.; Zhang, W.; Chen, X. Molecular Perovskite High-energetic Materials. Sci. China Mater. 2018, 61(8): 1123-1128.
  • [15] Chen, S.; Shang, Y.; He, C.; Sun, L.; Ye, Z.; Zhang, W.; Chen, X. Optimizing the Oxygen Balance by Changing the A-site Cations in Molecular Perovskite Highenergetic Materials. CrystEngComm 2018, 20(46): 7458-7463.
  • [16] Shang, Y.; Huang, R.; Chen, S.; He, C.; Yu, Z.; Ye, Z.; Zhang, W.; Chen X. Metalfree Molecular Perovskite High-energetic Materials. Cryst. Growth Des. 2020, 20(3): 1891-1897.
  • [17] Deng, P.; Ren, H.; Jiao, Q. Enhanced the Combustion Performances of Ammonium Perchlorate-based Energetic Molecular Perovskite using Functionalized Graphene. Vacuum 2019, 169: 108882.
  • [18] Jia, Q.; Deng, P.; Li, X.; Hu, L.; Cao, X. Insight into the Thermal Decomposition Properties of Potassium Perchlorate (KClO4)-based Molecular Perovskite. Vacuum 2020, 175: 109257.
  • [19] Zhou, J.; Ding, L.; Zhao, F.; Wang, B.; Zhang, J. Thermal Studies of Novel Molecular Perovskite Energetic Material (C6H14N2)[NH4(ClO4)3]. Chin. Chem. Lett. 2020, 31(2): 554-558.
  • [20] Deng, P.; Wang, H.; Yang, X.; Ren, H.; Jiao, Q. Thermal Decomposition and Combustion Performance of High-energy Ammonium Perchlorate-based Molecular Perovskite. J. Alloy Compd. 2020, 827: 154257.
  • [21] Deng, P.; Ren, H.; Jiao, Q. Enhanced Thermal Decomposition Performance of Sodium Perchlorate by Molecular Assembly Strategy. Ionics 2020, 26(2): 1039-1044.
  • [22] Li, X.; Hu, S.; Cao, X.; Hu, L.; Deng, P.; Xie, Z. Ammonium Perchlorate-based Molecular Perovskite Energetic Materials: Preparation, Characterization, and Thermal Catalysis Performance with MoS2. J. Energ. Mater. 2020, 38(2): 162-169.
  • [23] Han, K.; Zhang, X.; Deng, P.; Jiao, Q.; Chu, E. Study of the Thermal Catalysis Decomposition of Ammonium Perchlorate-based Molecular Perovskite with Titanium Carbide MXene. Vacuum 2020, 180: 109572.
  • [24] Deng, P.; Liu, Y.; Luo, P.; Wang, J.; Liu, Y.; Wang, D.; He, Y. Two-steps Synthesis of Sandwich-like Graphene Oxide/LLM-105 Nanoenergetic Composites using Functionalized Graphene. Mater. Lett. 2017, 194: 156-159.
  • [25] Zhang, H.; Liu, Y.; Li, S.; Huang, S.; Xu, J.; Zhang, H.; Li, J.; Yang, S. Threedimensional Hierarchical 2,2,4,4,6,6-Hexanitrostilbene Crystalline Clusters Prepared by Controllable Supramolecular Assembly and Deaggregation Process. CrystEngComm 2016, 18(41): 7940-7944.
  • [26] Pandita, P.; Arya, V.P.; Kaur, G.; Kumar, R.; Singh, S.; Kumar, M.; Soni, P.K. Size Reduction of HNS to Nanoscale by in Tandem Application of Chemo-mechanical Methods. Propellants Explos. Pyrotech. 2019, 44(3): 301-312.
  • [27] Huang, B.; Cao, M.; Nie, F.; Huang, H.; Hu, C. Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials. Def. Technol. 2013, 9(2): 59-79.
  • [28] Wuillaume, A.; Beaucamp, A.; David-Quillot, F.; Eradès, C. Formulation and Characterizations of Nanoenergetic Compositions with Improved Safety. Propellants Explos. Pyrotech. 2014, 39(3): 390-396.
  • [29] Deng, P.; Jiao, Q.; Ren, H. Nano Dihydroxylammonium 5,5’-Bistetrazole-1,1’-diolate (TKX-50) Sensitized by the Liquid Medium Evaporation-induced Agglomeration Self-assembly. J. Energ. Mater. 2020, 38(3): 253-260.
  • [30] Ye, B.; An, C.; Zhang, Y.; Song, C.; Geng, X.; Wang, J. One-step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity. Nanoscale Res. Lett. 2018, 13(1): 42.
  • [31] Qiu, H.; Patel, R.; Damavarapu, R.S.; Stepanov, V. Nanoscale 2CL-20·HMX High Explosive Cocrystal Synthesized by Bead Milling. CrystEngComm 2015, 17(22): 4080-4083.
  • [32] Li, F.; Liu, J. Advances in Micro-nano Energetic Materials. Chin. J. Energ. Mater. 2018, 26(12): 10611073.
  • [33] Li, T.; Li, R.; Nie, F.; Wang, J.; Huang, W.; Yang, G. Facile Preparation of Selfsensitized FOX-7 with Uniform Pores by Heat Treatment. Propellants Explos. Pyrotech. 2014, 39(2): 260-266.
  • [34] Hu, L.; Liu, Y.; Hu, S.; Wang, Y. 1T/2H Multi-phase MoS2 Heterostructures: Synthesis, Characterization and Thermal Catalysis Decomposition of Dihydroxylammonium 5,5’-Bistetrazole-1,1’-diolate. New J. Chem. 2019, 43(26): 10434-10441.
  • [35] Liu, Y.; Hu, L.; Gong, S.; Guang, C.; Li, L.; Hu, S.; Deng, P. Study of Ammonium Perchlorate-based Molecular Perovskite (H2DABCO)[NH4(ClO4)3]/Graphene Energetic Composite with Insensitive Performance. Cent. Eur. J. Energ. Mater. 2020, 17(3): 451-469.
  • [36] Jia, Q.; Bai, X.; Zhu, S.; Cao, X.; Deng, P.; Hu, L. Fabrication and Characterization of Nano (H2dabco)[K(ClO4)3] Molecular Perovskite by Ball Milling. J. Energ. Mater. 2019: 1-9.
  • [37] Chen M.H.; Zhang, T.; Chang, W.P.; Jia, X.B. Thermal Decomposition Kinetics of RDX with Distributed Activation Energy Model. Adv. Mater. Res. 2013, 641-642: 144-147.
  • [38] Elbasuney, S.; Yehia, M.; Hamed, A.; Mohamed Mokhtar, M.; Gobara, M.; Saleh, A.; Elsaka, E.; El-Sayyad, G.S. Synergistic Catalytic Effect of Thermite Nanoparticles on HMX Thermal Decomposition. J. Inorg. Organomet. Polym. Mater. 2021, 31: 2293-2305.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d080d6ac-276b-4728-9b05-27a811f9dc9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.