PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Strontium Ferrite (SrFe12O19) in Ammonium Perchlorate-based Composite Propellant Formulations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, various propellant compositions were prepared by incorporating strontium ferrite (SrFe12O19) in an ammonium perchlorate (AP), aluminium powder and hydroxyl-terminated polybutadiene (HTPB) based standard composite propellant. The compositions were then studied by assessing the effect of the SrFe12O19 content on the propellant slurry viscosity, and the mechanical and ballistic properties. The results showed that as the percentage of SrFe12O19 in the propellant was increased, the end of mix (EOM) slurry viscosity, tensile strength and E-modulus increased, while the elongation decreased. The ballistic properties data revealed that the burning rate of the propellant composition containing 1.0% SrFe12O19 was enhanced by around 15% (at 6.86 MPa) compared to the standard composition burning rate.
Rocznik
Strony
105--121
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune 411021, India
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune 411021, India
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune 411021, India
  • Defence Institute of Advanced Technology, Deemed University, Pune 411025, India
Bibliografia
  • [1] Kishore, K.; Sunitha, M.R. Mechanism of Catalytic Activity of Transition Metal Oxide on Solid Propellant Burning Rate. Combust. Flame 1978, 33: 311-314.
  • [2] Komarov, V.F. Catalysis and Inhibition of the Combustion of Ammonium Perchlorate Based Solid Propellants. Combust. Explos. Shock Waves 1999, 35(6): 670-683.
  • [3] Stephens, M.A.; Petersen, E.L.; Reid, D.L.; Carro, R.; Seal, S. Nano Additives and Plateau Burning Rates of Ammonium Perchlorate-based Composite Solid Propellants. J. Propul. Power. 2009, 25(5): 1068-1078.
  • [4] Nguyen, T.T. The Effects of Ferrocenic and Carborane Derivatives Burn Rate Catalyst in AP Composite Propellant Combustion: Mechanism of Ferrocene-Catalysed Combustion. DSTO-TR-0121, DSTO, 1995.
  • [5] Gore, G.M.; Tipare, K.R.; Bhatewara, R.G.; Prasad, U.S.; Gupta, M.; Mane, S.R. Evaluation of Ferrocene Derivatives as Burn Rate Modifiers in AP/HTPB-based Composite Propellants. Def. Sci. J. 1999, 49(2): 151-158.
  • [6] Talawar, M.B.; Divekar, C.N.; Makashir, P.S.; Asthana, S.N. Tetrakis-(4-Amino-1,2,4-Triazole) Copper Perchlorate: A Novel Ballistic Modifier for Composite Propellants. J. Propul. Power 2005, 21(1): 186-189.
  • [7] Nair, J.K.; Talawar, M.B.; Mukundan, T. Transition Metal Salts of 2,4,6-Trinitroanilinobenzoic Acid - Potential Energetic Ballistic Modifiers for Propellants. J. Energ. Mater. 2001, 19(2-3): 155-162.
  • [8] Verma, A.; Pandey, O.P.; Sharma, P. Strontium Ferrite Permanent Magnet. An Overview. Indian J. Eng. Mater. Sci. 2000, 7: 364-369.
  • [9] Valenzuela, R. Novel Applications of Ferrites, Physics Research International 2012, Article ID 591839; DOI: 10.1155/2012/591839.
  • [10] Haralambous, K.J.; Loizos, Z.; Spyrellis, N. Catalytic Properties of some Mixed Transition-Metal Oxides. Mater. Lett. 1991, 11(3-4): 133-141.
  • [11] Singh, G.; Kapoor, I.P.S.; Dubey, S.; Siril, P.F., Jian, Y.; Zhao, F.Q., Rong-Zu, H.U. Effect of Mixed Ternary Transition Metal Ferrites Nanocrystallites on the Thermal Decomposition of Ammonium Perchlorates. Thermochim. Acta. 2008, 477: 42-47.
  • [12] Singh, G.; Kapoor, I.P.S.; Dubey, S.; Siril, P.F. Kinetics of Thermal Decomposition of Ammonium Perchlorate with Nanocrystals of Binary Transition Metal Ferrites. Propellants Explos. Pyrotech. 2009, 34: 72-77.
  • [13] Srivastava, P.; Kapoor, I.P.S.; Singh, G. Nanoferrites: Preparation, Characterization and Catalytic Activity. J. Alloys Compd. 2009, 485(1-2): 88-92.
  • [14] Singh, G.; Kapoor, I.P.S.; Dubey, R.; Srivastava, P. Preparation, Characterization and Catalytic Behaviour of CdFe2O4 and Cd Nanocrystals on AP, HTPB and Composite Solid Propellants. Part 79. Thermochimic. Acta 2010, 511(1-2): 112-118.
  • [15] Singh, S.; Srivastava, P.; Singh, G. Nanorods, Nanospheres, Nanocubes: Synthesis, Characterization and Catalytic Activity of Nanoferrites of Mn, Co, Ni. Part 89. Mater. Res. Bull. 2013, 48(2): 739-746.
  • [16] Bukhtiyarova, M.V.; Ivanova, A.S.; Slavinskaya, E.M.; Plyasova, L.M.; Rogov, V.A.; Kaichev, V.V.; Noskov, A.S. Catalytic Combustion of Methane on Substituted Strontium Ferrite. Fuel 2011, 90: 1245-1256.
  • [17] Ji, K.; Dai, H.; Deng, J.; Zhang, L.; Jiang, H.; Xie, S.; Han, W. One Pot Hydrothermal Preparation and Catalytic Performance of Porous Strontium Ferrite Hollow Spheres for the Combustion of Toluene. J. Mol. Catal. A Chem. 2013, 370: 189-196.
  • [18] Aziz, A.A.; Puma, G.L.; Ibrahim, S.; Saravanan, P. Preparation, Characterization and Solar Photoactivity of Titania Supported Strontium Ferrite Nanocomposite Photocatalyst. J. Exp. Nanosci. 2013, 8(3): 295-310.
  • [19] Sheshko, T.F.; Serov, Y.M.; Dement’eva, M.V.; Shul’ga, A.; Chislova, I.V.; Zvereva, I.A. Catalytic Hydrogenation of Carbon Monoxide over Nanostructured Perovskite-like Gadolinium and Strontium Ferrite. Russ. J. Phys. Chem. A 2016, 90(5): 926-931.
  • [20] Liu, X.; Zhang, T.; Zhang, L. Microwave Induced Catalytic Application of Magnetically Separable Strontium Ferrite in the Degradation of Organic Dyes: Insight into the Catalytic Mechanism. Sep. Purif. Technol. 2018, 195:192-198.
  • [21] Shaula, A.L.; Karavai, O.V.; Ivanova, Y.A.; Mikhalev, S.M.; Tarelho, L.A.C. Strontium Ferrite as a Three-Way Catalyst Component. Mater. Lett. 2018, 216: 273-276
  • [22] Explosives, Impact Sensitivity Tests. STANAG No. 4489, 1st ed., September 17, 1999.
  • [23] Explosives, Friction Sensitivity Tests. STANAG No. 4487, 1st ed., August 22, 2002.
  • [24] Jawale, L.S.; Dey, C.; Mehilal; Gupta, M.; Bhattacharya, B. Effect of Experiment Environment on Calorimetric Value of Composite Solid Propellants. Def. Sci. J. 2013, 63(5): 467-472.
  • [25] Muthiah, R.; Manjari, R.; Krishnamurthy, V.N. Rheology of HTPB Propellant: Effect of Mixing Speed and Mixing Time. Def. Sci. J. 1993, 43(2): 167-172
  • [26] Standard Specifications for Permanent Magnet Materials. MMPA Standard No. 0100-00, Magnetic Materials Producers Association, Chicago, USA, 2000.
  • [27] Dodds, J. Techniques to Analyse Particle Size of Food Powders. In: Handbook of Food Powders, Processes and Properties (Bhandari, B.; Bansal, N.; Zhang, M.; Schuck, P., Eds.), Woodhead Publishing, Oxford, 2013, pp. 309-338; ISBN 978- 0-85709-513-518.
  • [28] Gocmez, A.; Erisken, C.; Yilmazer, U.; Pekel, F.; Ozkar, S. Mechanical and Burning Properties of Highly Loaded Composite Propellants. J. Appl. Polym. Sci. 1998, 67: 1457-1464.
  • [29] Jones, H.C.; Yiengst, H.A. Dilatometer Studies of Pigment-Rubber Systems. Ind. Eng. Chem. 1940: 1354-1359.
  • [30] Bazaki, H.; Kubota, N. Friction Sensitivity Mechanism of Ammonium Perchlorate Composite Propellants. Propellants Explos. Pyrotech. 1991, 16: 43-47.
  • [31] Chiguma, J.; Johnson, E.; Shah P.; Gornopolskaya, N.; Jones, W. Thermal Diffusivity and Thermal Conductivity of Epoxy-Based Nanocomposites by the Laser Flash and Differential Scanning Calorimetry Techniques. OJCM 2013, 3: 51-62.
  • [32] Kalal, R.K.; Ropia, B.; Bansode, M.K.; Shekhar, H.; Rao, C.G. Measurement of Direction Dependent Thermal Properties of Graphite-1346. AIP Conf., Proc. Sem., 1536, 2013, 1352-1354.
  • [33] Gupta, G.; Jawale, L.; Mehilal; Bhattacharya, B. Various Methods for the Determination of the Burning Rates of Solid Propellants – An Overview. Cent. Eur. J. Energ. Mater. 2015, 12(3): 593-620.
  • [34] Babu, S.K.V.; Raju, P.K.; Thomas, C.R.; Hamed, S.A.; Ninan, K.N. Studies on Composite Solid Propellant with Tri-Modal Ammonium Perchlorate Containing an Ultrafine Fraction. Def. Tech. 2017, 13: 239-245.
  • [35] Kishore, K.; Sunitha, M.R. Mechanism of Catalytic Activity of Transition Metal Oxides on Solid Propellant Burning Rate. Combust. Flame 1978, 33: 311-314.
  • [36] Komarov, V.F. Catalysis and Inhibition of the Combustion of Ammonium Perchlorate Based Solid Propellants. Combust. Explos. Shock Waves 1999, 35(6): 670-683.
  • [37] Propellants, Solid Sampling, Examination and Testing. MIL-STD-286C: Method 403.1.3, 1991.
  • [38] Kurva, R.; Gupta, G.; Dhabbe, K.I.; Jawale, L.S.; Kulkarni, P.S.; Maurya, M. Evaluation of 4-(Dimethylsilyl) Butyl Ferrocene Grafted HTPB as a Burning Rate Modifier in Composite Propellant Formulation using Bicurative System. Propellants Explos. Pyrotech. 2017, 42(4): 401-409.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d07d8f81-65a5-466c-82ba-31196e195fa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.