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ABSTRACT. The digital elevation model (DEM) is one of the most critical sources of terrain 
elevations, which are essential in various geoscience applications. Most of these applications 
need precise elevations, which are available at a high cost. Thus, sources like the Shuttle Radar 
Topography Mission (SRTM) DEM are frequently accessible to all users but with low accuracy. 
Consequently, many studies have tried to improve the accuracy of DEMs acquired from these 
free sources. Importantly, using the SRTM DEM is not recommended for an area that partly 
contains high-accuracy data. Thus, there is a need for a merging technique to produce a merged 
DEM of the whole area with improved accuracy. In recent years, advancements in geographic 
information systems (GIS) have improved data analysis by providing tools for applying 
merging techniques (like the minimum, maximum, last, first, mean, and blend (conventional 
methods)) to improve DEMs. In this article, DEM merging methods based on artificial neural 
network (ANN) and interpolation techniques are proposed. The methods are compared with 
other existing methods in commercial GIS software. The kriging, inverse distance weighted 
(IDW), and spline interpolation methods were considered for this investigation. The essential 
step for achieving the merging stage is the correction surface generation, which is used for 
modifying the SRTM DEM. Moreover, two cases were taken into consideration, i.e., the zeros 
border and the H border. The findings show that the proposed DEM merging methods 
(PDMMs) improved the accuracy of the SRTM DEM more than the conventional methods 
(CDMMs). The findings further show that the PDMMs of the H border achieved higher 
accuracy than the PDMMs of the zeros border, while kriging outperformed the other 
interpolation methods in both cases. The ANN outperformed all methods with the highest 
accuracy. Its improvements in the zeros and H border respectively reached 22.38% and 75.73% 
in elevation, 34.67% and 54.83% in the slope, and 40.28% and 52.22% in the aspect. Therefore, 
this approach would be cost-effective, especially in critical engineering projects.  
Keywords: digital elevation model, GIS, artificial neural network, interpolation methods, 
SRTM 
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1. INTRODUCTION 

1.1. Background and related work 
Accurate terrain elevation is crucial for numerous geoscientific engineering applications. digital 
elevation model (DEM) is one of the most important sources of elevation (Hawker, Neal, and 
Bates 2019). In geostatistical analysis, DEM is used to quantitatively represent the bare Earth’s 
surface, which is used to describe the spatial patterns of various surfaces, e.g., surface water, 
ground surface, and canopy (Mukherjee et al. 2013). This can be represented in a raster or vector 
model in geographical information system (GIS) (Habib et al. 2020, Huang and Yang 2011). 
Aside the DEM, digital surface model (DSM) and digital terrain model (DTM) are other 
elevation surfaces that are frequently used for the ground terrain (Kim et al. 2020). However, 
DTM represents the Earth’s terrain, i.e., bare ground (Xiong, Wang, and Wessel 2017), while 
DSM includes objects on the ground, such as buildings, vegetation, and human-made structures 
(Nwilo et al. 2022). Apparently, most data providers and professional users use the term “digital 
elevation model” as a general term for digital topography (Badura and Przybylski 2005), (Varga 
and Bašić 2015). It is important to note that there are four different representations of DEM. 
They are regular grid, outlines, triangulated grid, and triangulated irregular network (TIN) 
(Khemiri et al. 2013, Leitão, Prodanović, and Maksimović 2016). Generally, DEM can be 
created using remote sensing (Habib et al. 2020), field surveying (Mesa-Mingorance and Ariza-
López 2020), aerial photography (Arun 2013), satellite images (Yap et al. 2019), 
interferometry, and laser surveying. This can also be achieved through scanning and digitizing 
topographic maps (Khemiri et al. 2013) and field surveying, e.g., the leveling, total station, and 
global navigation satellite system (GNSS) survey (Nwilo et al. 2022).  
Recently, Light Detection and Ranging (LIDAR), Radio Detection and Ranging (RADAR) 
altimetry (Yap et al. 2019), and Interferometric Synthetic Aperture Radar (InSAR) (Zhou et al. 
2012) have been the most advanced and widely used technologies for acquiring three-
dimensional information over large areas with high horizontal resolution and high vertical 
accuracy (Jain et al. 2007). These techniques are expensive, i.e., high instrument and survey 
costs (Shaikh, Yadav and Manekar 2021, Capolupo 2021). Thus, they are not well integrated in 
developing countries (Jakovljevic et al. 2019, Kulp and Strauss 2018). Consequently, most 
users in the developing countries resort to freely accessible open-source products. 
There are several global DEMs (GDEMs), such as the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM), 
created for free and commercial use (Reuter, Strobl and Mehl 2011). These GDEMs represent 
the new-generation models, which have been significantly improved in comparison with the 
first released models like the global 30 arc-second elevation (GTOPO30) (Mukherjee et al. 
2013) and one arc-minute global relief model (ETOPO1) (Varga and Bašić 2015). 
In this study, the SRTM DEM (1 arc-second) is considered in the investigation. It is a joint 
international project of the National Aeronautics and Space Administration (NASA), the 
National Geospatial-Intelligence Agency, and the German and Italian Space Agencies to collect 
three-dimensional digital mapping (Yang, Meng and Zhang 2011). The SRTM DEM is mostly 
used as the essential alternative data when there is no DEM availability, or there is budget 
constraint to purchase costly high-resolution satellite data (Wendi et al. 2016). Moreover, the 
GDEMs are vital sources of topographic information for many geoscience studies and 
applications (Mirza, Dawod and Al-Ghamdi 2011). Some examples include, the geodetic 
survey (Yamazaki et al. 2017), geological survey, water resources and hydrology (Hawker et 
al. 2019), evaluation of natural hazards and vegetation survey (Wendi et al. 2016), and mineral 
and petroleum industries (Badura and Przybylski 2005). In addition, they are applied in 
engineering works, e.g., highway construction and wind turbine location optimization (Akturk 
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and Altunel 2019); land surface modeling, such as management of flood risk (Jakovljevic et al. 
2019), volcanology, ecology, and glaciology (Kim et al. 2020, Mukherjee et al. 2013). Despite 
these achievements, their accuracy, still, does not meet the requirements for precise applications 
due to DEM errors (Yamazaki et al. 2017). Therefore, the accuracy assessment of DEMs is 
critical in these applications (Varga and Bašić 2015). 
DEM error sources include data collection error (gross error), lacking orientation of stereo-
images (systematic error), data processing methodology (Yue et al. 2007), georeferencing of 
stereo-images, grid spacing, interpolation techniques for DEM generation, characteristics of the 
terrain surface (Chen and Yue 2010), and random error, which cannot be avoided (Varga and 
Bašić 2015, Mukherjee et al. 2013). As a result, several investigations on DEM have been 
conducted by researchers leading to many methodical propositions to reduce errors and increase 
accuracy. For example, Yue et al. (2007), Cook et al. (2012), Wilson (2012), Sari et al. (2019), 
Hugenholtz et al. (2013), Chen and Yue (2010), Warriner (2005), and Zhou et al. (2012) 
suggested different methods for generating improved DEM. Further, DEM accuracy was 
evaluated by Hawker et al. (2019) over Croatia. Varga and Bašić (2015) investigated floodplain 
sites, while Akturk and Altunel (2019) considered a study area that was highly broken and 
vegetated terrain. Furthermore, other studies evaluated the vertical accuracy of open-source 
DEM, i.e., SRTM and ASTER (Yap et al. (2019), Miliaresis and Paraschou (2005), Suwandana 
et al. (2012), Mirza et al. (2011), Mukherjee et al. (2013), Falorni et al. (2005), and Shaikh et 
al. (2021)). To improve the accuracy of the DEM, Yamazaki et al. (2017) produced a high-
accurate map of global terrain elevations, Capolupo (2021) enhanced the accuracy of GDEM 
of differences in the Google Earth Engine for 3D change detection analysis, Muhadi, Mohd 
Kassim, and Abdullah (2019) Improved DEM using data fusion technique for oil palm 
replanting phase. In addition, Xu and Zhou (2016) suggested recovering distorted DEMs of 
regular terrain while Deilami et al. (2012) recommended reducing pit and flat error for 
improving DEM accuracy. 
In constructing DEMs, interpolation methods make use of an effective factor. Consequently, 
many investigations have been achieved for selecting the suitable method for enhancing DEM 
accuracy. Such as, Habib et al. (2020) studied the impact of interpolation techniques on the 
accuracy of the large-scale DEM. Rishikeshan, Katiyar and Mahesh (2014) also evaluated DEM 
interpolation methods in GIS. Moreover, Jana (2011), Arun (2013), and Schwendel, Fuller, and 
Death (2012) established the appropriate interpolation methods for creating DEMs. 
 In the past few years, artificial neural networks (ANNs) have received increased attention for 
achieving unprecedented results in many complicated geomatics problems. ANN has been 
applied in the creation of DEMs, leading to some contributions like the SRTM DEM 
improvement (Kim et al. 2020, Wendi et al. 2016, Kulp and Strauss 2018), landslide detection 
(Gorsevski et al. 2016, Kawabata and Bandibas 2009), calibration and verification of DEM 
parameters (Ye et al. 2019, Benvenuti, Kloss and Pirker 2016), DTM creation and flood risk 
mapping (Jakovljevic et al. 2019), and the analysis of remotely sensed data for producing DEM 
(Mas and Flores 2008). 
Recently, an effective merging technique was applied to the elevation data sources. This has 
been suggested due to the availability of elevation data sets for more than one area. In some 
cases, these datasets have low accuracy in some areas and high accuracy levels in other areas. 
Therefore, using a low-accuracy dataset for the whole area when parts of the area have high-
accuracy data is not recommended. Consequently, merging the most accurate data sources (e.g., 
DEMs) to produce a single DEM that covers the whole area of interest with the highest possible 
resolution and accuracy was proposed. For example, Gruber et al. (2013), Choussiafis, 
Karathanassi and Nikolakopoulos (2012), and Jain et al. (2007) applied mosaic methods to 
improve DEM accuracy. 
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In this study, we hypothesize that, if there is available data with high accuracy (i.e., GNSS 
observations or high-accuracy DEM) for a small area S located in a large area B, a highly 
accurate DEM for the large area B can be created. This can be achieved by proposing DEM 
merging methods based on ANN and interpolation techniques. These techniques are employed 
for generating a correction surface (Vs) for the large area. The SRTM DEM is adjusted by 
adding the correction surface and merging with the small area S. Note that the small area S is 
the overlap area between the SRTM DEM and the large area B. Therefore, the main objectives 
of this study are to (i) generate a highly accurate DEM for a large area based on GNSS 
observations for a small portion of that area, (ii) mutually evaluate the proposed DEM merging 
methods (PDMMs) in comparison with the conventional DEM merging methods (CDMMs) 
available in ArcGIS software (in terms of elevations, slopes, and aspects), and (iii) compare 
and analyze the accuracy of the merged DEMs with SRTM DEM. 

1.2. Interpolation methods  
Interpolation is the process of predicting the values of unsampled locations based on collected 
samples, i.e., neighboring measurements (Sacchi, Ulrych and Walker 1998). The GIS software 
presents powerful analytical tools for various interpolation techniques (Habib et al. 2020). Some 
examples include kriging, inverse distance weighted (IDW), natural neighbor, triangulation 
with linear interpolation (TLI), spline, spline with barriers, topo to raster, and trend. However, 
the most widely used interpolation methods are Kriging, IDW, and spline (Yang et al. 2004). 
The IDW and spline are classified as deterministic interpolation methods. They are directly 
based on the surrounding measurements or specified mathematical formulas that determine the 
smoothness of the resulting surface. Kriging is classified as a geostatistical method (i.e., based 
on statistical models). This includes the statistical relationships among the measured points. 
Geostatistical techniques create a prediction surface and evaluate it at appreciable accuracy 
(Heine 1986). These methods are illustrated in the following sections. 

1.2.1. Kriging  
Kriging is an advanced geostatistical method that generates an estimated surface from scattered 
points with z-values (Rishikeshan et al. 2014). It depends mainly on a variogram that displays 
the variability between data points as a function of distance instead of the actual data values 
(Arun 2013). If a good variogram model is available, kriging provides the best estimation of 
the input data (Kim et al. 2020). Also, kriging assumes that the distance between sample points 
reflects a spatial correlation that can be used to explain the variations in the surface. This method 
fits a mathematical function to a specified number of points, or all points within a specified 
radius, to determine the surface elevations (Royle and AG 1981). Kriging follows multistages: 
exploratory statistical analysis of the dataset, variogram modeling, creating the surface, and 
(optionally) exploring a variance surface (Oliver and Webster 1990). The mathematical formula 
of this interpolator is formed as a weighted sum of the data (Lenda et al. 2016): 

  𝑧𝑧(𝑠𝑠0) = � 𝜆𝜆𝑖𝑖𝑧𝑧(𝑠𝑠𝑖𝑖)
𝑛𝑛
𝑖𝑖=1  (1) 

where 𝑧𝑧(𝑠𝑠𝑖𝑖) is the measured value at the 𝑖𝑖th location, 𝜆𝜆𝑖𝑖 is an unknown weight for the measured 
value at the 𝑖𝑖th location, 𝑠𝑠0 is the prediction location, and 𝑛𝑛 is the number of measured values. 
In other words, kriging achieves the prediction process through two steps. The first is the 
creation of the variograms and covariance functions to estimate the statistical dependence 
(called spatial autocorrelation) values that depend on the model of autocorrelation (fitting a 
model). The second is the prediction of the unknown values. 

mk:@MSITStore:C:/PROGRA%7E2/ArcGIS/DESKTO%7E1.8/Help/SPATIA%7E1.CHM::/009z0000006m000000.htm
mk:@MSITStore:C:/PROGRA%7E2/ArcGIS/DESKTO%7E1.8/Help/SPATIA%7E1.CHM::/009z0000006q000000.htm
mk:@MSITStore:C:/PROGRA%7E2/ArcGIS/DESKTO%7E1.8/Help/SPATIA%7E1.CHM::/009z0000006s000000.htm
mk:@MSITStore:C:/PROGRA%7E2/ArcGIS/DESKTO%7E1.8/Help/SPATIA%7E1.CHM::/009z0000006v000000.htm
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Semivariogram modeling is a key step between spatial description and spatial prediction. The 
empirical semivariogram provides information on the spatial autocorrelation of datasets. 
Nevertheless, this information is not for all directions and distances. Thus, fitting the model is 
necessary for this reason and to ensure that kriging predictions have positive kriging variances 
(Meng, Liu and Borders 2013).  
The kriging tool provides several functions for modeling the empirical semivariogram (Oliver 
and Webster 1990): circular, spherical, exponential, Gaussian, and linear. Significantly, the 
spherical model is one of the most commonly used models. 

1.2.2. IDW 
This technique estimates values at an unsampled location through a weighted average of data 
points within a specified radius generated around each grid cell (Arun 2013). Consequently, the 
points closer to the prediction location will influence the estimated value more than those farther 
away (Rishikeshan et al. 2014, Lu and Wong 2008). A cell's value of the interpolated surface 
is calculated using Equation 2 (Habib et al. 2020): 

 𝑧𝑧𝑔𝑔 = ∑ 𝑧𝑧𝑖𝑖𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

, 𝑤𝑤𝑖𝑖 = 1
𝑑𝑑𝑖𝑖
𝑘𝑘 (2) 

where 𝑧𝑧𝑔𝑔 is the predicted value at the unsampled location, 𝑛𝑛 is the number of measured points 
used for the interpolation, 𝑧𝑧𝑖𝑖 is the known value, 𝑤𝑤𝑖𝑖 is the weight, 𝑑𝑑𝑖𝑖 is the separation distance 
between the grid node and the data point, and 𝑘𝑘 is a smoothing parameter of the estimated 
surface.  
IDW principally relies on the inverse of the distance raised to mathematical power. The power 
parameter controls the significance of known points on the interpolated values based on their 
distance from the output point. It is a positive real number whose default value is 2 (Arun 2013). 
By defining a higher power value, more emphasis can be put on the nearest points resulting in 
nearby data being influenced most while the surface has more detail (be less smooth). As the 
power increases, the interpolations begin to approach the value of the nearest sample point. 
Conversely, specifying low power turn to influence surrounding points farther away, resulting 
in a smoother surface (Lu and Wong 2008).  

1.2.3. Spline  
This interpolation method estimates points using a mathematical function that minimizes the 
overall surface curvature, resulting in a smooth surface (Rishikeshan et al. 2014). The spline 
interpolation requires that the surface pass precisely through the data points and have minimum 
curvature (Houdek, Verlinden and Hajžman 2022). There are two types of spline interpolation: 
regularized and tension (Childs 2004). While the regularized approach creates a smooth, 
gradually changing surface with points that may lie outside the sample data range, the tension 
approach controls the stiffness of the surface according to the character of the modeled 
phenomenon (Song et al. 2022). The spline algorithm for the surface interpolation is expressed 
in Equation 3: 

 𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝑇𝑇(𝑥𝑥,𝑦𝑦) + ∑ 𝜆𝜆𝑗𝑗 𝑅𝑅(𝑟𝑟𝑗𝑗𝑛𝑛
𝑗𝑗=1 ) (3) 

where 𝑗𝑗 =  1, 2, . . . ,𝑛𝑛, 𝑛𝑛 is the number of points, 𝜆𝜆𝑗𝑗 are coefficients found by the solution of a 
system of linear equations, and 𝑟𝑟𝑗𝑗 is the distance from the point (𝑥𝑥, 𝑦𝑦) to the 𝑗𝑗th point. 𝑇𝑇(𝑥𝑥,𝑦𝑦) 
and 𝑅𝑅(𝑟𝑟) are defined differently, depending on the selected option (Mitáš and Mitášová 1988). 
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It is important to note that this research is not focusing on studying the different parameters of 
the interpolation methods mentioned. Nonetheless, the commonly used parameters according 
to the previous investigations are selected for the trial tests during the development of the 
proposed methods. Consequently, the spherical model, the power parameter equal 2, and the 
regularized approach are considered for the kriging, IDW, and spline interpolation methods, 
respectively.  

1.3. Artificial Neural Networks 
Artificial neural network (ANN) is one type of machine learning algorithm that has, lately, 
received increased attention for achieving promising results in different geoscience applications 
(Marmanis et al. 2015, Mas and Flores 2008). This algorithm is implemented as a system of 
interconnected processing elements that are functionally analogous to biological neurons (Kim 
et al. 2020). ANN consists of three layers: the input, hidden, and output layers (Figure 1). 

As shown in Figure 1, the input layer includes input 𝑃𝑃, which has a single vector of 𝑅𝑅 elements 
that relate to the hidden layer by synaptic weights, 𝑊𝑊𝑁𝑁ℎ,R

ℎ . The synaptic weights 𝑊𝑊𝑁𝑁𝑜𝑜,𝑁𝑁ℎ 
𝑜𝑜  make 

connections between the hidden and output layers (Gurney 2018). The superscripts ℎ and 𝑜𝑜 
represent the hidden and output layer, respectively. The first index indicates the specific neuron 
destination for that weight; the second index denotes the source of the signal fed to the neuron; 
while 𝑁𝑁ℎ ,𝑁𝑁𝑜𝑜 represent the number of neurons (NON) in the hidden and output layers, 
respectively. These neurons represent the processing units in ANN, where each neuron has a 
bias 𝑏𝑏, summation 𝑆𝑆, activation function 𝑓𝑓, and output 𝑎𝑎. The hidden layer’s output 𝑎𝑎ℎ is the 
input for the output layer, which produces an output 𝑎𝑎𝑜𝑜. The bias 𝑏𝑏 is like a weight, but it has a 
constant input of 1. The summation 𝑆𝑆 can be calculated in the hidden and output layers using 
Equations (4) and (5) (Hagan, Demuth and Beale 1996): 

 𝑆𝑆𝑗𝑗ℎ = ∑ 𝑊𝑊𝑗𝑗𝑖𝑖
ℎ𝑃𝑃𝑖𝑖  + 𝑏𝑏𝑗𝑗

ℎ𝑅𝑅
𝑖𝑖=1  (4) 

 𝑆𝑆𝑘𝑘𝑜𝑜 = ∑ 𝑊𝑊𝑘𝑘𝑗𝑗
𝑜𝑜 𝑎𝑎𝑗𝑗ℎ  + 𝑏𝑏𝑘𝑘

𝑜𝑜𝑁𝑁ℎ
𝑗𝑗=1  (5) 

where 𝑆𝑆𝑗𝑗ℎ and 𝑆𝑆𝑘𝑘𝑜𝑜 represent the weighted inputs summed with the bias at the hidden neuron 𝑗𝑗 
and output neuron 𝑘𝑘, respectively. 

This summation is fed to the activation function (i.e., transfer function), which is transformed 
to specific values depending on the type of activation function considered. There are three 
activation functions that are most commonly used (Han and Moraga 1995, Haykin 2009). The 
first function (Equation 6) is a linear transfer function (Purelin), which produces output equal 
to its input, where: 

 𝑓𝑓(𝑆𝑆) = 𝑆𝑆 (6) 

The second function (Equation 7) is the log sigmoid (Logsig); this transfer function takes the 
input, which lies between plus and minus infinity, and transforms the output into the range 0–
1, using the expression: 

 𝑓𝑓(𝑆𝑆) = 1
1+𝑒𝑒−𝑆𝑆

 (7) 



128 
 

 
Figure 1. ANN architecture 

Equation (8) presents the third function, which is the hyperbolic tangent sigmoid (Tansig); this 
function is like the log sigmoid function, but the output here is transformed into the range 
−1 to 1 using the expression: 

 𝑓𝑓(𝑆𝑆) = 𝑒𝑒𝑆𝑆−𝑒𝑒−𝑆𝑆

𝑒𝑒𝑆𝑆+𝑒𝑒−𝑆𝑆
𝑓𝑓(𝑆𝑆) = 1

1+𝑒𝑒−𝑆𝑆
 (8) 

Although there are different types of ANNs, the feed-forward neural network, the most 
straightforward type of ANN, is frequently considered. It generates a relationship between the 
inputs and outputs using a backpropagation (BP) algorithm (Seiffert 2001, Schmidhuber 2015). 
The Levenberg–Marquardt (LM) algorithm, often the fastest BP algorithm, is applied for 
training datasets in the network to minimize errors (cost function) using the mean squared error 
(Levenberg 1944, Marquardt 1963). The training is continued until the stopping criteria meet 
the requirements. The dataset, in most cases, is divided into 70% for training, 15% for validation 
test, and 15% for independent testing of the network’s performance. 

1.4. Conventional DEMs merging methods 
GIS software provides functions for merging two or more grid-based (raster) datasets. These 
methods include the first, the last, the minimum, the maximum, the mean, and the blend. They 
are based on the assumption that grid-based DEMs have the same spatial resolutions (cell size) 
as well as a coordinate system.  
The First method determines the pixel value from the first raster dataset, i.e., high accuracy 
DEM, in the mosaic list. It does not operate any elevation adjustment on the DEMs; the DEMs 
are just superimposed. Then, the existing raster dataset is considered first. Figure 2 shows the 
results when there are four overlapping pixels, and the First option is selected. The values of 
the first raster dataset (on the left) are superior to another mosaicked dataset. Therefore, the 
result is the same as the first set of overlapping pixels. 
The Last method determines the pixel values from the overlapping last raster dataset. Figure 3 
shows the result of a mosaic where the Last option is selected. When the two rasters are 
mosaicked, the overlapping values from the second raster dataset become the output mosaic. 
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(DEMhigh accuracy) (DEMlow accuracy)  

 
Figure 2. First method 

(DEMhigh accuracy) (DEMlow accuracy)  

 
Figure 3. Last method 

Figure 4 shows the Minimum method; it determines the lower pixel value from the two 
overlapping raster datasets. The illustration below shows the result of a mosaic where the 
Minimum option is selected. When the two rasters are mosaicked, the output mosaic results 
from the minimum values of the two raster datasets. 

(DEMhigh accuracy) (DEMlow accuracy)  

 
Figure 4. Minimum method 

The Maximum method determines the higher pixel values from the two overlapping raster 
datasets. Figure 5 shows the result of a mosaic where the Maximum option is selected. When 
the two rasters are mosaicked, the output mosaic results from the maximum values of the two 
raster datasets. 

(DEMhigh accuracy) (DEMlow accuracy)  

 
Figure 5. Maximum method 

The Mean method determines the average pixel values from the two overlapping raster datasets. 
As shown in Figure 6, the result of a mosaic resulting from the Mean option is shown; the output 
pixel type is float. When the two rasters are mosaicked, the output results from averaging the 
two overlapping values. If many raster datasets are overlapping, only two raster datasets are 
processed at one time. Also, if the output pixel type is integer, then the values are rounded. 
Figure 7 displays the Blend method; it uses a distance-weighted algorithm to determine the 
value of overlapping pixels. The output cell is a blend of the overlapping areas. This method is 
the most computationally intensive option for mosaicking. 
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(DEMhigh accuracy) (DEMlow accuracy)  

 
Figure 6. Mean method 

In the illustration in Figure 7, the diagram shows two overlapping raster datasets. The cell where 
the x is located has two values: the value of the pixel in dataset R1 (outlined red) and the value 
of the pixel in dataset R2 (outlined blue). Since the x is closer to dataset R2, the value of the R2 
pixel is more heavily weighted in the output. For more details, see ESRI (2020). 

(DEMhigh accuracy) (DEMlow accuracy) 

 
Figure 7. Blend method 

As was previously stated, the resulting DEM by min., max., first, and last methods may 
generate terrain surface discontinuities (cliffs) along the boundaries. These discontinuities are 
created due to the elevation differences in (variation in accuracies) DEMs, leading to errors in 
the slope and aspect values (Leitão et al. 2016). On the contrary, Mean and Blend methods 
determine the average elevation value within the overlapping area of the two DEMs. Thus, a 
smooth transition between the merged DEMs is achieved. This results in new elevations. 
The drawbacks identified in the conventional DEM merging methods reveal the need for new 
methods. These new methods can retain high-accuracy DEM data while creating smooth 
transitions between the two merged DEMs. 

2. MATERIALS AND METHODS  

2.1. Study area and data sources 
The study area is a region with an area equal to 3276400 m2 located in the Assiut governorate 
desert, Egypt. The elevations of the area’s topography vary between 88 m and 134 m. A 
reference station (R), fixed by the Egyptian survey authority, was selected for the GNSS survey. 
Figure 8 and Table 1 show the coordinates of the corner points of the study area and the 
reference point R. 
Two types of data were collected.  

I. DEM file (SRTM 1 sec.) was downloaded from the U.S. Geological Survey (USGS) 
website (https://pubs.er.usgs.gov).  

II. Field observations were collected according to the DGNSS technique, i.e., two units of 
GNSS receivers (TRIMBLE R8s). The horizontal and vertical accuracies of this GNSS 
receiver type are shown in Table 2. The first unit (base station) was set up at reference 
station R, and the second unit (rover) was used for recording data by applying 

https://pubs.er.usgs.gov/
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postprocessed kinematic (PPK) mode. The GNSS receivers’ parameters were set at a 
sampling time = 1 second, occupation time = 1 minute, and elevation mask = 12⁰. 

Table 1. Corners’ coordinates of the study area and the reference point R 

Point 

UTM Coordinates Geodetic Coordinates 

Easting Northing Orthometric 
height (H) Longitude Latitude 

Ellipsoid 
height 

(h) 

m m m ⁰ ′ ″ ⁰ ′ ″ m 

P1 327256.448 3021899.541 86.214 31 15 15.321 27 18 33.418 98.977 

P2 328756.137 3023120.616 102.135 31 16 9.246 27 19 13.765 114.913 

P3 330325.359 3022440.421 127.317 31 17 6.662 27 18 52.371 140.085 

P4 328521.254 3020944.203 96.403 31 16 1.802 27 18 2.955 109.153 

R 329450.670 3019874.311 109.047 31 16 36.137 27 17 28.615 121.783 

UTM – Universal Traverse Mercator (WGS 84 – UTM ZONE 36 N) 

Table 2. Root Mean Square Error (RMSE) of the different GNSS surveying types for TRIMBLE 
receivers (R8s) 

GNSS surveying type 
RMSE 

Horizontal Vertical 

Static 3 mm + 0.1 ppm 3.5 mm + 0.4 ppm 

PPK 8 mm + 1 ppm 15 mm + 1 ppm 

RTK 8 mm +1 ppm 15 mm + 1 ppm 

PPK – Postprocessing Kinematic; RTK – Real-Time Kinematic; ppm – parts per million 
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Figure 8. Study area and the reference point R 

2.2. Methodology 
This study is based much on statistical comparisons. Thus, relevant statistical and engineering 
software and programs were employed for highly accurate results. These programs are: 

− Trimble Business Centre (TBC), 

− Autodesk civil 3d vers.2021, 

− AutoCAD vers. 2021, 

− Microsoft Excel, 

− MATLAB R2021a, 

− ArcGIS 10.8. 
The investigation was performed in five stages, which are shown in Figure 9 and discussed in 
the following sections. 

2.2.1. Data processing and preparation 
The GNSS observations were processed using Trimble Business Center (TBC) software based 
on the known station (R). The processed data was in the geodetic coordinate system (Latitude, 
Longitude, Ellipsoidal height); thus, the coordinates were converted to projected coordinates 
(Easting, Northing, Orthometric Height) according to the Universal Transverse Mercator 
(UTM) ZONE 36N. 
The TBC outputs were used (in Autodesk Civil 3d and Excel programs) to produce grid data (5 
m x 5 m). Also, the border coordinates (E, N) of the whole area with zeros and H elevations 
were assigned. Then, the overlap area coordinates (E, N, H) were extracted from the grid. These 
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overlap coordinates were added to the border coordinates in two cases (Figure 10): the border 
with zeros elevations (zeros border) and the border with H elevations (H border). The grid files 
of the overlap and the whole area were converted to DEM files in the ArcGIS environment. For 
achieving a high level of accuracy in the statistical stage, especially in comparisons, the 
horizontal coordinates of the whole area grid (E, N) were used for extracting the elevations of 
the DEMs under test, which means the same horizontal coordinates were applied for all DEMs. 
These coordinates were extracted in an Excel file and converted to a shape file named Extraction 
File (E.F.) in ArcGIS. Accordingly, the E.F. was used to extract the elevations from the 
DEMSRTM, thereby converting DEMSRTM (raster data) to vector data. After that, the following 
files were retrieved: 

− DEM file for the whole area (DEMGNSS), which was used as a reference surface in the 
statistics stage (Figure 11), 

− DEM file for the overlap area (DEM Overlap), 

− DEM file for the whole area from the USGS website, i.e., DEMSRTM (Figure 12), 

− Grid file for the whole area (GNSS processed data), 

− Grid file for the whole area (extracted from DEMSRTM data), 

− Grid file for the overlap area, 

− Grid files for the overlap area with the two cases: zeros and H borders. 
The DEM Overlap and its location on the DEMSRTM are shown in Figure 13 and Figure 14, 
respectively.  
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MDEM0 – Merged DEM in the case of zeros border;  

MDEMP – Merged DEM in the case of GNSS points at the border 

Figure 9. Methodology flow chart  
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Case 1: Zeros border 

 
Case 2: GNSS Points border 

Figure 10. The two cases of the study area border 
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Figure 11. DEMGNSS for the study area 

 
Figure 12. SRTM DEM for the study area 
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Figure 13. DEM of the overlap area 

 
Figure 14. The position of overlap area on SRTM DEM 
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2.2.2. Correction surface generation 
This is the basic stage of the study. As mentioned in Section 1.1, a small area of the overlapping 
DEMGNSS and DEMSRTM was selected from the study area. The differences (corrections) 
between the DEMSRTM and DEM Overlap were calculated based on two techniques: (1) 
interpolation technique and (2) ANN technique. This was used as the correction surface, which 
was extended to the entire area.  

2.2.2.1. Interpolation techniques  
The most popular interpolation methods, considered, were kriging, IDW, and spline. It is 
important to note that the external borders do not have data to interpolate. Thus, additional data 
is required at the borders of the whole area to possibly execute the interpolation operation. 
Consequently, the two scenarios mentioned in Section 2.2.1 were applied. The first scenario 
assumed that the differences between the elevations of DEMSRTM and the border elevations are 
zeros (zeros borders) (Warriner 2005). The second scenario was proposed to test the effect of 
the same boundary with H elevations (H border). In this case, the differences between the 
elevations of DEMSRTM and that of the borders were estimated. After that, the two scenario 
outputs were added to the overlap differences.  

2.2.2.2. ANN technique 
Also, the ANN algorithm was formulated in MATLAB software for generating the correction 
surface (Figure 15 9). According to the ANN components, the horizontal coordinates of the 
overlap area (Eo, No) were used as inputs, while the elevation differences between the overlap 
area and DEMSRTM were the target of outputs. The horizontal coordinates of DEMSRTM (ED, ND) 
were the sample data.  
It is important to mention that ANN initialization produces different results. Thus, the ANN 
initializations are often repeated several times to guarantee more accurate results. 
Consequently, the number of initializations was set at 100; this iterated automatically. One 
hidden layer with ten neurons was selected, according to the recommendation of Alemam, 
Yong, and Mohammed (2022). During the development of this ANN algorithm, the results 
indicated that the linear activation function (pure-line), in the hidden and output layers, is 
suitable for this network and data compared to the other activation functions. The Train L.M. 
was selected as the training function. The involved training parameters according to the Train 
L.M. function and learning rate are shown in Table 3. Unlike the interpolation method, the ANN 
does not need a zeros border. Apparently, two scenarios were applied; ANN only and ANN 
with H elevations (H border) boundary. This network produced the DEMSRTM corrections (VD) 
as the output. The average value of these outputs was estimated by applying the least squares 
method (LSM) to minimize the weighted residuals (𝑣𝑣) by applying the normal equation: 

 𝐿𝐿 + 𝑣𝑣 = 𝐴𝐴𝐴𝐴 (9) 

and the solution model: 

 𝐴𝐴 =  (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇 𝐿𝐿 (10) 

in the output data, 𝐿𝐿 is the output matrix, 𝐴𝐴 is the design matrix, and 𝐴𝐴 is the unknown matrix. 
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Table 3. The parameters involved in the ANN algorithm  

Epoch Goal Max_fail Min_fail Mu Learning rate 
1000 0 6 1e-7 0.001 0.01 

Epoch – maximum number of epochs to train; Goal – performance goal;  
Max_fail – maximum validation failrues; Min_fail – minimum validation failures; Mu – adaptive value 

This resulted in eight types of corrections surfaces (𝑉𝑉𝑆𝑆). Consequently, DEMSRTM elevations 
were modified according to the equation: 

 𝐻𝐻𝑆𝑆𝑅𝑅𝑇𝑇𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖
= 𝐻𝐻𝑆𝑆𝑅𝑅𝑇𝑇𝑆𝑆𝑈𝑈𝑆𝑆𝑈𝑈𝑆𝑆 + 𝑉𝑉𝑆𝑆𝑖𝑖 (11) 

where 𝑉𝑉𝑆𝑆𝑖𝑖 is the 𝑖𝑖th corrections surface. 

The eight modified HSRTM were exported to ArcGIS software to generate DEM files.  

2.2.3. DEMs generation 
The imported data in ArcGIS software was converted to shape files, then to triangular irregular 
network (TIN) files, which were further transformed into raster data (DEM files). 
The two scenarios (zeros and H border) were applied for creating Vs by interpolation and ANN 
methods. According to the first scenario, the generated DEMs were DEM0 Kriging, DEM0 IDW, 
and DEM0 Spline. Then, DEMP 

Kriging, DEMP 
IDW, and DEMP

Spline were also generated in the 
second scenario. The ANN outputs presented DEMANN and DEMP

ANN, where the superscripts 
o and p represent the zeros and H border, respectively. 

2.2.4. DEMs merging 
The first, last, minimum, maximum, mean, and blend methods, in ArcGIS software, are the 
Conventional DEMs Merging Methods (CDMMs). These methods were applied for merging 
DEMSRTM (lower surface) and DEM Overlap (upper surface). The resulting merged DEMs 
(MDEM) were MDEMFirst, MDEMLast, MDEMMin, MDEMMax, MDEMMean, and 
MDEMBlend. Cognizant of the fact that the first method retains the upper surface properties, 
it was used for merging the DEMs produced in the previous section with the DEM Overlap. 
Consequently, the Proposed DEM Merging Methods (PDMMs) produced eight merged DEMs, 
including MDEM0 Kriging, MDEM0 IDW, MDEM0 Spline, MDEMANN, MDEMP Kriging, 
MDEMP IDW, MDEMPSpline, and MDEMPANN. 

2.2.5. Statistical analysis  
The processed data of the whole area (study area), whether the vector (i.e., E, N, and H 
coordinates) or raster (DEMGNSS), represent the reference (comparison) surface for the merged 
DEMs. The results were evaluated according to the differences in elevations, slopes, and aspects 
between the merged DEMs and the comparison surface. Likewise, the differences between the 
DEMSRTM and DEMGNSS were estimated. These differences were analyzed in the case of the 
absolute value and considering the signs. The absolute values statistics were achieved in terms 
of mean absolute error (MAE), Maximum value (Max.), Minimum value (Min.), and root mean 
square error (RMSE) as expressed in Equations 12 and 13:  

 𝑀𝑀𝐴𝐴𝑀𝑀 = ∑ |𝑣𝑣𝑖𝑖|𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 (12) 

 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �∑ (𝑣𝑣𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 (13) 
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where 𝑣𝑣𝑖𝑖  is the 𝑖𝑖th value of 𝑣𝑣, which represents the elevation differences between the GNSS 
processed data and the different DEMs produced; n is the number of observations. 

 
E0 – Easting coordinate of the overlap area; N0 – Northing coordinate of the overlap area;  

V0 – the corrections (elevations differences) at the overlap area;  
ED – Easting coordinate of the SRTM DEM; ND – Northing coordinate of the SRTM DEM;  

VD – the output corrections that generate the corrections surface (Vc); Nt – number of initializations 

Figure 15. Algorithm steps of the ANN stage 
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In the case of considering the sign, the data were analyzed based on the box and whisker plot 
(Figure 16). It is very significant when a large number of datasets are analyzed. This is a 
standardized way of displaying the distribution of the dataset based on the five-number 
summary: the sample median, the lower and upper quartiles, any outliers (computed using the 
interquartile range), and the minimum and maximum values that are not outliers. Each box’s 
top and bottom edges are the upper and lower quartiles. The distance between the top and 
bottom edges is the interquartile range (IQR). The upper quartile corresponds to the 0.75 
quantile, and the lower quartile corresponds to the 0.25 quantile. Outliers are the values more 
than 1.5 IQR away from the top or bottom of the box. The whiskers are lines that extend above 
and below each box. One whisker connects the upper quartile to the nonoutlier maximum value, 
and the other connects the lower quartile to the nonoutlier minimum value. For more 
information on this, see Wickham and Stryjewski (2011), Thomas (2010), and Dekking et al. 
(2005). To clarify, assume the following elevations samples: 54, 66, 69, 70, 71, 73, 73, 80, 84, 85, 
86, 88, 90, 91, and 95 m. Accordingly: 

− Min. = 54; 

− Max. = 91; 

− Lower Quartile = 70; 

− Upper Quartile = 88; 

− Median = 80. 

 
Figure 16. Box and whisker plot elements 

3. RESULTS AND DISCUSSIONS 
The DEMGNSS, which was selected as a comparison surface for the statistical analysis, was 
assumed to have no error. The following sections present the results and discussions for the 
elevation, slope, and aspects differences between the DEMGNSS and all DEMs merging 
methods, i.e., the CDMMs and the PDMMs.  

3.1. Elevation 
The elevation differences between DEMGNSS and DEMSRTM are shown in Figure 17 and 
illustrated in Table 4. It can be observed that, for the data distribution, the median is closer to 
the top of the box (upper quartile); thus, the distribution is negatively skewed (skewed left). In 

https://en.wikipedia.org/wiki/Five-number_summary
https://en.wikipedia.org/wiki/Five-number_summary
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contrast, Figure 18, which represents the elevation differences in the case of CDMMs, shows a 
positive skewed in all methods. Further, comparing the median value in this case (Table 5) with 
that obtained in DEMSRTM, disregarding the sign, it shows that all the median values obtained 
by the CDMMs are less than the DEMSRTM median. Furthermore, the upper and lower quartile 
values indicate that DEMSRTM results are more dispersed than those from the CDMMs.  
Considering the absolute value, the statistics demonstrate that the mean absolute error (MAE) 
for all CDMMs is better than the MAE in the case of DEMSRTM. These results have been 
confirmed through the RMSEs, which are shown in Tables 4, 5, and Figure 19. Excluding the 
last method’s results, whose RMSE is equal to that produced by DEMSRTM, all the CDMMs 
achieved higher accuracy than DEMSRTM. The first and blend methods have provided the best 
results in terms of the median, MAE, and RMSE. This is because the first method takes 
advantage of the highly accurate DEM through the merging operation and the distance-
weighted algorithm that is applied in the blend method. 

 
Figure 17. Elevation differences between DEMSRTM and DEMGNSS 

Table 4. The differences in elevations between the DEMSRTM and DEMGNSS 

MAE – Mean Absolute Error 

  

DEM 
type 

Absolute values statistics Box chart statistics 

MAE Max. Min. RMSE Median Whisker 
(max.) 

Whisker 
(min.) 

25th 
percentile 

75th 
percentile 

DEMSRTM 3.64 19.49 0.00 4.78 -2.47 3.37 -8.68 -4.16 -1.15 
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Table 5. The elevation differences between the conventional DEMs merging methods  
and the DEMGNSS 

Merged 
DEMs 

Absolute values statistics Box chart statistics 

MAE Max. Min. RMSE Median Whisker 
(max.) 

Whisker 
(min.) 

25th 
percentile 

75th 
percentile 

MDEMFirst 3.26 19.64 0.00 4.41 2.27 8.67 -4.07 0.71 3.89 

MDEMLast 3.63 19.64 0.00 4.78 2.46 8.74 -3.44 1.13 4.17 

MDEMMin 3.59 19.64 0.00 4.75 2.46 8.74 -3.44 1.13 4.17 

MDEMMax 3.30 19.64 0.00 4.44 2.27 8.68 -4.08 0.71 3.89 

MDEMMean 3.38 19.64 0.00 4.45 2.36 8.43 -3.47 0.99 3.97 

MDEMBlend 3.26 19.64 0.00 4.41 2.27 8.67 -4.07 0.71 3.89 
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Figure 18. Elevation differences between the conventional DEMs merging methods and DEMGNSS 
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Figure 19. Root mean square error of the elevation’s differences between DEMGNSS  

and the merged DEMs in the case of conventional DEMs merging methods 

On the other hand, Figure 20 a–c shows the results of the PDMMs in the case of the zeros 
border. The results reveal a negative skew (skewed left), but the results of ANN in the same 
case (Figure 20 d) show that the median is closer to the bottom of the box, which means the 
distribution is positively skewed (skewed right). Besides, comparing these results (Table 6 a) 
and the best results of the CDMMs demonstrate that the data dispersion from the lower and 
upper quartile is significantly less than those of the CDMMs. The median, MAE, and RMSE 
show improvement in the merged DEM than the CDMMs. The MAE of the spline method is 
less than that produced by the IDW and kriging methods. However, the RMSE of the kriging 
method is better than both spline and IDW. Moreover, the ANN achieved the best results in the 
median, MAE, and RMSE. 

Table 6. The statistics of elevations differences between the proposed DEM merging methods  
and the DEMGNSS 

Merged 
DEMs 

Absolute values statistics Box chart statistics 

MAE Max. Min. RMSE Median Whisker 
(max.) 

Whisker 
(min.) 

25th 
percentile 

75th 
percentile 

a. Zeros border 

MDEM0
Kriging

 2.86 19.97 0.00 4.14 -1.71 5.01 -8.63 -3.52 -0.11 

MDEM0
IDW 2.98 22.17 0.00 4.30 -1.87 4.91 -8.75 -3.63 -0.22 

MDEM0
Spline 2.85 20.17 0.00 4.20 -1.60 5.12 -8.55 -3.43 -0.01 

MDEMANN 2.19 22.01 0.00 3.71 0.37 5.53 -4.69 -0.86 1.70 

b. H border 

MDEMP
Kriging 1.99 19.54 0.00 3.23 -0.01 4.46 -4.79 -1.32 0.99 

MDEMP
IDW 2.12 21.93 0.00 3.51 -0.06 4.48 -5.11 -1.51 0.88 

MDEMP
Spline 2.15 20.25 0.00 3.48 -0.02 4.89 -5.38 -1.53 1.04 

MDEMP
ANN 0.85 4.85 0.00 1.16 0.18 2.77 -2.34 -0.43 0.85 
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Table 6 b and Figure 21 display the results of the PDMMs in the case of the H border. The 
results show that the lower and upper quartile as well as the median values indicate fewer scatter 
than in all previous cases. Also, while the PDMMs related to the interpolation methods show a 
negative skew, the ANN shows a positive skew. According to the absolute values (Table 6 b), 
it can be concluded that the PDMMs, by the interpolation methods, achieved higher accuracy 
for the merged DEMs than that produced using the zeros border. Additionally, the kriging 
method achieved better MAE and RMSE than the spline method, which improved the IDW 
results except for MAE. Generally, the ANN proved its superiority as it outperformed all in 
terms of MAE and RMSE. The RMSEs of the PDMMs are illustrated in Figure 22. 

 
Figure 20. Elevation differences according to DEMGNSS for the proposed DEM merging methods in 

the case of zero border and the ANN 
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Figure 21. Errors in elevation between the DEMGNSS and the proposed DEM merging methods in the 

case of additional observations at the study area border 

 
Figure 22. Root mean square error of the elevations differences between DEMGNSS and the merged 

DEMs in the case of PDMMs 
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To confirm the previous results, the elevation differences for all applied methods were classified 
into four categories. These categories were between less than one meter (highly accurate) and 
more than five meters (least accurate). 
Table 7 and Figure 23 display the classification results of the DEMSRTM. In addition, the results 
of the CDMMs are shown in Figure 24 and illustrated in Table 8. The CDMMs achieved higher 
accuracy (diff. ≤ 1 m) than the DEMSRTM, which achieved a high percentage that is equal to the 
mean method in the medium accuracy category (i.e., 1 m < diff. ≤ 3 m). The results also show 
that the first and blend methods achieved the highest percentage in the first category, while the 
last and minimum methods achieved a high percentage in the fourth category (very low 
accuracy).  

Table 7. Classification of the difference between DEMGNSS and DEMSRTM into four categories  
of accuracy 

DEM type 

1st category 
high accuracy 

2nd category 
medium 
accuracy 

3rd category 
low accuracy 

4th category 
very low 
accuracy 

diff. ≤ 1 m 
[%] 

1 m < diff. ≤ 3 m 
[%] 

3 m< diff. ≤ 5 m 
[%] 

diff. > 5 m 
[%] 

DEMSRTM 14 41 24 21 

diff. – elevation differences 

 
Figure 23. Classification of the difference between DEMGNSS and DEMSRTM into four categories  

of accuracy 

The PDMMs classifications are shown in Table 9 and presented in Figs. 25 and 26. The results 
for the zeros border (Table 9 a) show a higher percentage in the first category than the CDMMs, 
which produced a high percentage in the fourth category. Further, the spline method provided 
a better percentage in the first category than the kriging and IDW methods. The IDW produced 
the highest percentage in the second category (medium accuracy). The ANN outperformed all 
the other methods; it achieved the highest and lowest percentages in the first and fourth 
categories, respectively. 
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Table 8. Four categories of the merged DEMs accuracy resulting from the differences  
between DEMGNSS and the merged DEMs in the case of CDMMs 

Merged DEMs 

1st category 
high accuracy 

2nd category 
medium 
accuracy 

3rd category 
low accuracy 

4th category 
very low 
accuracy 

diff. ≤ 1 m 
[%] 

1 m < diff. ≤ 3 m 
[%] 

3 m< diff. ≤ 5 m 
[%] 

diff. > 5 m 
[%] 

MDEMFirst 21 38 23 18 

MDEMLast 15 40 24 21 

MDEMMin 15 40 24 21 

MDEMMax 20 38 23 19 

MDEMMean 16 41 24 19 

MDEMBlend 21 38 23 18 

Table 9. Classification of the elevations differences between DEMGNSS  
and the merged DEMS in the case of PDMMs 

Merged DEMs 

1st category 
high accuracy 

2nd category 
medium 
accuracy 

3rd category 
low accuracy 

4th category 
very low 
accuracy 

diff. ≤ 1 m 
[%] 

1 m < diff. ≤ 3 m 
[%] 

3 m< diff. ≤ 5 m 
[%] 

diff. > 5 m 
[%] 

a. Zeros border 

MDEM0
KRIGING 29 36 19 16 

MDEM0
IDW 27 37 20 16 

MDEM0
Spline 31 36 17 16 

MDEMANN 41 28 19 12 

b. H border 

MDEMP
KRIGING 46 34 10 10 

MDEMP
IDW 45 34 9 12 

MDEMP
Spline 43 35 10 12 

MDEMP
ANN 71 12 7 10 
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Figure 24. Four categories of the merged DEMs accuracy resulting from the differences between 

DEMGNSS and the merged DEMs in the case of CDMMs 
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Figure 25. Classification of the elevations differences between DEMGNSS and the PDMMs in the case 

of zeros border and ANN 

Referring to Figure 26 and Table 9 b, it can be noted that the interpolation methods, i.e., H 
border, achieved superiority over the case of the zeros border. Again, the spline method yielded 
a high percentage in the second group, but the kriging method was the best in the high accuracy 
and fourth categories. ANN and kriging achieved similar percentages in the fourth category, 
but ANN outperformed kriging in the high-accuracy category. 
Generally, it can be concluded that, in interpolation methods, kriging performed best in the two 
applied cases (i.e., zeros border and H border). This could be due to kriging’s ability to take 
into account the spatial structure of the data, as proven by Rishikeshan et al. (2014) and Arun 
(2013). Notwithstanding, ANN outperformed kriging in the merged DEMs. 
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Figure 26. Four categories of the merged DEMs accuracy resulting from the differences between 

DEMGNSS and merged DEMs by PDMMs in the case of additional observations at the border 

3.2. Slopes and aspects  
The elevation accuracy directly impacts the slope and aspects accuracies. This was investigated 
to validate the claim. The differences in slope and aspect degrees according to DEMGNSS were 
calculated based on RMSEs for comparison among the different DEMs merging methods. 
Figs. 27 and 28 show the slope and aspects distributions of the DEMGNSS and DEMSRTM, 
respectively. Also, the slopes and aspects of the DEMs obtained by the CDMMs are displayed 
in Figs. 29 and 30, respectively. Tables 10 and 11 provide the slopes and aspects statistics of 
the DEMSRTM and CDMMs. The results show that the slope accuracy resulting from DEMSRTM 
is better than the last, minimum, and maximum methods. Also, the accuracy of the aspects for 
DEMSRTM is better than the mean method. While the blend method achieved the best slope in 
terms of RMSE, the minimum method was the worst. 
Similarly, the results of the aspect show that the last method achieved the best accuracy, while 
the largest error was seen in the mean method. Furthermore, the first and blend methods reached 
the same results of aspects. Consequently, it can be noted that the applied technique that 
achieved the best slopes may not necessarily achieve the best aspects. The RMSEs of the slopes 
and aspects are displayed in Figs. 31 and 32, respectively. 
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Figure 27. DEMs of the slopes and aspects for the GNSS points 

 
Figure 28. DEMs of the slopes and aspects for the SRTM data 
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Figure 29. Slopes distribution of the conventional DEMs merging methods 
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Figure 30. Aspects distribution of the conventional DEMs merging methods 
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Table 10. The summary of slope and aspects differences between DEMSRTM and DEMGNSS 

DEM type 
Slope [%] Aspects [deg] 

Min. Max. Mean RMSE Min. Max. Mean RMSE 

DEMSRTM -18.47 50.47 0.30 7.24 -351.69 359.07 32.67 112.65 

Table 11. Statistics of the slope and aspects differences between DEMGNSS and the merged DEMs  
in the case of conventional DEMs merging methods 

Merged 
DEMs 

Slope [%] Aspects [deg] 

Min. Max. Mean RMSE Min. Max. Mean RMSE 

MDEMFirst -168.94 46.22 3.91 7.15 -352.30 360.97 219.42 89.99 

MDEMLast 0.02 51.63 5.16 7.47 1.00 360.97 237.57 64.26 

MDEMMin -155.92 50.42 4.93 7.52 -351.15 360.97 234.90 69.68 

MDEMMax -204.99 50.37 4.33 7.50 -352.30 360.97 221.85 86.62 

MDEMMean -123.96 46.22 4.15 6.75 -354.10 360.72 48.57 138.97 

MDEMBlend -134.84 41.07 3.51 6.43 -352.30 360.97 219.42 89.99 

 
Figure 31. Root mean square error of the slope differences between DEMGNSS  

and the merged DEMs in the case of conventional DEMs merging methods 
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Figure 32. Root mean square error of the aspects differences between DEMGNSS  

and the merged DEMs in the case of CDMMs 

The slopes and aspects distribution of the PDMMs in the two cases (zeros and H border) are 
shown in Figs. 33, 34, 35 and 36, respectively. Table 12, Figure 37, and Figure 38 display the 
RMSEs of the slope and aspects for the PDMMs. As shown in Table 12 a, zeros border case, 
although the slope results establish that kriging and IDW are better than the CDMMs, the ANN 
achieved the best RMSE of the slope differences. The aspect results of the ANN were the best 
among the PDMMs and CDMMs, except for the last method, which achieved the minimum 
RMSE. In addition, kriging, IDW, and spline methods resulted in aspects like the first and blend 
methods, but better than the mean method. However, they were the worst compared to the 
remaining CDMMs. 
Table 12 b, which represents the PDMMs (H border case), shows that the slope and aspects 
accuracies are the best. Although kriging achieved the highest accuracy among the selected 
interpolation techniques, the ANN achieved the best RMSE for the slope and aspect differences. 

Table 12. Characteristics of the slope and aspects differences between DEMGNSS  
and the merged DEMs in the case of PDMMs 

Merged 
DEMs 

Slope [%] Aspects [deg] 

Min. Max. Mean RMSE Min. Max. Mean RMSE 

a. Zeros border 

MDEM0
KRIGING -24.70 40.51 3.60 5.82 -352.30 360.97 219.35 89.99 

MDEM0
IDW -27.28 45.06 3.95 6.41 -352.30 360.97 219.39 89.93 

MDEM0
Spline -30.56 50.98 4.40 7.14 -352.30 360.97 219.40 89.92 

MDEMANN -19.93 32.33 2.92 4.73 -264.23 270.73 164.67 67.28 

b. H border 

MDEM0
KRIGING -21.51 35.01 3.15 5.09 -253.66 259.90 157.93 64.79 

MDEM0
IDW -22.14 36.09 3.23 5.24 -257.18 263.51 160.15 65.65 

MDEM0
Spline -25.02 41.07 3.64 5.90 -260.00 266.39 161.92 66.36 

MDEMANN -13.71 21.99 2.02 3.27 -211.38 216.58 131.73 53.82 
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Figure 33. Slopes distribution of the proposed DEMs merging methods in the case of zeros border  

and the ANN 
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Figure 34. Slopes distribution of the proposed DEMs merging methods in the case of additional 

observations at the study area border 
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Figure 35. Aspects distribution of the proposed DEMs merging methods in the case of zeros border 

and the ANN 
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Figure 36. Aspects distribution of the proposed DEMs merging methods in the case of additional 

observations at the study area border 



162 
 

 
Figure 37. Root mean square error of the slope differences between DEMGNSS  

and the merged DEMs in the case of PDMMs 

 
Figure 38. Root mean square error of the aspects differences between DEMGNSS  

and the merged DEMs in the case of PDMMs 

The improvements in the elevations, slopes, and aspects were analyzed according to the 
DEMSRTM for both CDMMs and PDMMs. 
The improvements in the CDMMs are shown in Figure 39 and Table 13 a6. The results show 
no improvement in the elevation and slope for the last method. Also, some CDMMs show no 
improvements in accuracy, i.e., the minimum and maximum methods in the slopes and the mean 
method in the aspects. Nonetheless, some improvements are seen in other indicators. For 
example, the first and blend method in the elevations achieved the best improvement, while the 
blend improved in the slopes, and the last and minimum methods in the aspects. 
Table 13 b and Figure 40 illustrate the percentages of improvement in the case of the PDMMs. 
The results show that all the proposed methods significantly improved in the three terms, i.e., 
the elevations, slopes, and aspects. The elevation and slope achieved more improvements than 
those of the CDMMs. kriging, IDW, and spline methods (H border case) improved more in the 
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elevations and aspects than for the ANN (zeros border case), which rather improved in the 
interpolation methods. Interestingly, kriging (in the two cases) improved than the IDW and 
spline methods. 
It is also important to note that the ANN (zeros border case) achieved better results than the 
applied interpolation methods in the two cases (i.e., the zeros border and H border) for the 
PDMMs, for slope accuracy improvement. Noticeably, the ANN (H border case) outperformed 
all other methods in the elevations, slopes, and aspects, with improvements reaching 76%, 55%, 
and 52%, respectively.  

Table 13. The improvement in elevations, slopes, and aspects by the merged DEMs  
compared to DEMSRTM based on RMSE 

Merged DEMs 
Improvement [%] 

Elevations Slopes Aspects 

a. Conventional DEMs merging methods 

MDEMFirst 7.74 1.24 20.12 

MDEMLast 0.00 -3.18 42.96 

MDEMMin 0.63 -3.87 38.14 

MDEMMax 7.11 -3.59 23.11 

MDEMMean 6.90 6.77 -23.36 

MDEMBlend 7.74 11.19 20.12 

b. Proposed DEMs merging methods 

MDEM0
KRIGING 13.39 19.61 20.12 

MDEM0
IDW 10.04 11.46 20.17 

MDEM0
Spline 12.13 1.38 20.18 

MDEMANN 22.38 34.67 40.28 

MDEMP
KRIGING 32.43 29.70 42.49 

MDEMP
IDW 26.57 27.62 41.72 

MDEMP
Spline 27.20 18.51 41.09 

MDEMP
ANN 75.73 54.83 52.22 
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Figure 39. The improvement of elevations, slopes, and aspects by the conventional DEMs merging 

methods compared to DEMSRTM 

 
Figure 40. The improvement of elevations, slopes, and aspects by the proposed DEMs merging 

methods in comparison with DEMSRTM 

In view of the results, it can be noted that the PDMMs were better than the CDMMs in all 
statistical analyses. This could be due to the correction surface (Vs) applied for the PDMMs, 
which had a highly accurate overlapping zone before merging the DEMs. Thus, the CDMMs 
applied the merging technique only at the overlap area and retained the remaining zones without 
changes.  
The ANN technique, in the case of the zeros border, performed the correction surface without 
additional points at the borders, but the interpolation methods cannot perform the interpolation 
properly without additional points at the border. This is because of the power of the 



165 
 

backpropagation algorithm and further the ANN mechanism that depends on establishing a 
relation (i.e., mapping) between the inputs and outputs data based on the activation function. 
This mapping presents an ANN simulation that can produce any data out of the input range.  
In the case of the H border, the interpolation methods realized the superiority of the ANN 
without additional points at the border. This is because the interpolation technique depends, 
basically, on the surrounding points (Oliver and Webster 1990). So, the GNSS points at the 
borders increase the accuracy and the confidence level of the interpolated points more than in 
the case of zero points. 
Overall, the ANN reached the best results with additional GNSS points at the border. This is 
because the ANN simulation performs best with a high volume of data (Alemam et al. 2022). 
Therefore, the ANN is preferred as its cost-effective. However, if there exist additional 
observations at the borders (GNSS points), the interpolation methods can equally provide 
reasonable results. 

4. CONCLUSIONS 
DEM applications in engineering projects are costly due to the need for high-precision 
instruments and a long processing time. In this article, a combination of highly accurate 
geodetic GNSS data (for just a small portion of an area) and a low-accurate SRTM DEM (of 
the whole area) improved the DEM (of the whole area), resulting in promising accuracy. This 
combination, known as merging technique, is applied in commercial GIS by several methods 
known as the conventional DEMs merging methods (CDMMs) (i.e., minimum, maximum, last, 
first, mean, and blend). However, PDMMs based on a correction surface generated by the 
interpolation methods and a designed ANN algorithm outperformed the existing CDMMs.  
Kriging, IDW, and spline interpolation methods were applied considering two cases (zeros 
border and H border) for the whole border areas. Zero elevations values for the entire border 
area for the first case (zeros border), and, in the second case, GNSS points were added (H 
border). The GNSS observations of the whole area were collected for generating a high-
accuracy DEM as a comparison surface (i.e., DEMGNSS). The elevation differences were 
calculated and then represented according to the box and whisker chart, considering the signs. 
Moreover, the absolute statistics of elevations, slopes, and aspects differences were calculated. 
Additionally, the elevation differences were classified based on the accuracy into four 
categories, and further, the improvements by all DEMs merging methods in DEMSRTM were 
determined. 
According to the improvements for DEMSRTM, it can be concluded that some CDMMs did not 
improve (e.g., the last, minimum, and maximum methods in the slopes, the mean method in the 
aspects, and the last method in the elevations). Nonetheless, the best improvements for the 
CDMMs were seen in the first and blend methods reaching 7.74% in elevations, blend in the 
slopes reaching 11.19%, and the last and minimum methods reaching 42.96% and 38.14%, 
respectively, in aspects. Apparently, the kriging method performed best in the two cases. Its 
improvements in the zeros and H border, respectively, reached 13.39% and 32.43% in elevation, 
19.61% and 29.70% in the slope, and 20.12% and 42.49% in the aspect. Also, the ANN 
improved the interpolation methods for elevations, slopes, and aspects, reaching 22.38%, 
34.67%, and 40.28%, respectively, in the zeros border case. 
Notwithstanding, better improvements were seen in the H border case, except for the slope. 
Interestingly, the ANN for the H border case achieved the optimal improvements in the 
elevations, slopes, and aspects terms reaching 75.73%, 54.83%, and 52.22%, respectively. This 
indicates that the PDMMs retained the high accuracy of the overlap area and significantly 
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improved the output DEM without needing GNSS observations for the entire area, thus 
leveraging cost and time. 
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