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Artificial Neural Networks— Modern 
Systems for Safety Control

Robert A. Kosiriski 
Cezary Koztowski

Central Institute for Labour Protection, Poland

A short review of the applications of artificia l neural networks in different fields 
of industry with a description of their main properties is made. Such systems 
have specific properties typical for the human brain, which can decide on the 
superiority of artificial neural networks over standard control systems. Basic 
types of such networks as well as their principles of operation and successful 
applications are described. The application of artificial neural networks in 
safety engineering is discussed with stress on their special properties, which 
are necessary in safety critical systems.

artificial neural networks safety control

1. INTRODUCTION

Artificial neural networks (ANNs) are systems, which have been exten­
sively studied in the last decade, both by physicists and engineers. This 
has been so because of ANNs’ interesting physical properties and their 
rich applications. The studies were preceded by the discoveries (honored 
by seven Nobel Prizes in Physiology) concerning the structure and the 
activity of a single neural cell of the human brain (neuron) and the 
whole neural network. Some properties of ANNs (described further) are 
typical specifically for the human brain. This determines the superiority 
of ANN-based systems over systems using standard algorithmic methods 
on conventional computers (Hertz, Krogh, & Palmer, 1995; Nelson 
& Illingworth, 1994; Patterson, 1996).

Correspondence and requests for reprints should be sent to Robert A. Kosiriski, 
Central Institute for Labour Protection, Czerniakowska 16, 00-701 Warsaw, Poland.'
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318 R.A. KOSINSKI AND C. KOZLOWSKI

Adaptability is one of the main properties of ANNs. An ANN can 
learn from examples, which results in its desirable behavior becoming 
more perfect. It is not necessary to have the knowledge about the 
process of reaching the solution of the problem presented to the 
network as is in the case of a standard numerical approach performed 
by an execution of a program in the computer. The process of learning 
is based on a set of pairs of input data {Xm} and output data {Yn} 
corresponding to input data {Xm}. After the process of training, the 
network can realize the nonlinear mapping f of input data to output 
data as shown in Figure 1, but the explicit form of f is not known. 
Moreover, a properly trained ANN is able to find correct outputs also 
for input signal Xk, which do not belong to the learning set {Xm}. This 
important property is called generalization and is very often performed 
by the brain.

The ability to handle noisy and incomplete data is another important 
property of ANNs. Such inputs occur very frequently in reality and 
constitute a serious problem for standard control systems. Similarly as 
in the case of the brain, in many cases ANNs are able to react correctly 
even in the case of perturbed input data.

Figure 1. Neural network realizes nonlinear mapping f of input data {Xm} to output 
data {Y m}.

ANNs consist of a large number of neurons and each of them 
individually changes its states in time; therefore, we can say that each of 
them processes information individually and that the whole network 
processes information in parallel. This results in the high speed of the 
work of the network. This property is very important in control systems 
that work in real time and it is also necessary in other time critical 
applications.

Resistivity to partial damage is another property of ANNs. In the 
case of hardware implementations of ANNs, despite partial damage of
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ARTIFICIAL NEURAL NETWORKS FOR SAFETY CONTROL 319

some elements, the whole network can work correctly, mainly due to the 
parallel processing of information.

In the very extensive scientific literature devoted to ANNs’ applications 
(including specialized international journals like Neural Networks, Neuro­
computing, and IEEE Transactions on Circuits and Systems) a large 
number of successfully working systems has been presented.

Systems for pattern recognition are one of the most common appli­
cation of ANNs. They were constructed to analyze finger prints (Lynch 
& Haunt, 1995), radar pictures (Luttrell, 1995), read handwritten letters 
(Laaksonen & Oja, 1996), analyze the trajectories of particles in acceler­
ators (Kolanoski, 1996), and so forth. Figure 2 shows an example of the 
recognition of a noised picture of a human face by a neural network 
(a 3-layer perceptron with 54-15-64 neurons in the layers; Osowski, 
1996).

Figure 2. An example of a correct recognition of a noised picture of a human face 
by an artificial neural network. The figure on the left shows a noised picture of 
a face, which constitutes input data of the network; the proper picture of this face is 
one of the patterns stored in the network. The picture on the right shows the output 
of the network: a clear picture of the same face (Osowski, 1996).

2. SUCCESSFUL APPLICATIONS OF ANNs

ANNs are very widely used in optimization. They are able to control 
telecommunication traffic, to classify medical signals (like EEG), to 
predict economic processes, and so forth (Burgess, 1995; Dumpelmann

D
ow

nl
oa

de
d 

by
 [

18
5.

55
.6

4.
22

6]
 a

t 1
1:

25
 1

8 
M

ar
ch

 2
01

5 



320 R.A. KOSINSKI AND C. KOZtOWSKI

& Eiger, 1996; Leary, Gallinari, & Didelet, 1996). The Traveling Salesman 
Problem is a simple but very instructive example showing the solution of 
an optimization problem. It is very often used for investigating the 
optimization possibilities of a designed neural network. In this problem 
the minimal route of a salesman who starts from one port and has to 
visit each of a given number of randomly located other ports only once, 
should be found (Kirkpatrick, Gelatt, & Yecci, 1983). An example of the 
solution of this problem for the case of 400 ports is shown in Figure 3.

a) b) c)

Figure 3. Traveling Salesman Problem solved by a neural network for the case of 
400 ports (ports are located in each summit of the line). Some initial states: 
Figures a and b. Figure c shows the minimal route of the salesman visiting all ports 
and corresponds to the final state of the network (Muller, Reinhardt, & Strickland, 1995).

In an increasing number of the industrial applications of different 
kinds of robots ANNs are also used as control systems. In the future, 
such robots, equipped with a robust ANN, will analyze the spatio- 
temporal relations in their dynamically changing surroundings and 
perform very precise actions that can substitute people (e.g., during 
work in dangerous areas). A number of publications have been devoted 
to such applications of ANNs; however, the achievement of a level of 
effectiveness typical for humans is still rather remote (Ritter, Martinez, 
& Schulten, 1992). Figure 4 presents an example of a mobile robot 
navigated by ANNs (Leonard & Durrant-Whyte, 1992).

As already mentioned, an ANN is able to perform arbitrary non­
linear mapping of input signals to proper output. Such situations occur 
in typical technological processes in, for example, chemical industry. 
There is a number of solutions, in which ANNs control the course of 
chemical reactions setting parameters at appropriate levels and preventing
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ARTIFICIAL NEURAL NETWORKS FOR SAFETY CONTROL 321

Figure 4. Mobile robot navigated by artificial neural networks (Leonard, J.J., & Durrant- 
Whyte, H.F., 1992). Reproduced by kind permission of Kluwer Academic Press.

dangerous situations (Molga, 1996). Other applications of ANNs are 
connected with the recognition of the composition of air or water 
mixtures. Such systems can analyze the level of pollution in water or air, 
or control the creation of undesirable chemical reactions. Networks for 
odor recognition are an example (see, e.g., Lee, Payne, Byunn, & Persaud,
1996).

The aforementioned examples show that the field of applications of 
ANNs is very wide. On the other hand, up to now research related 
directly to safety control has been rather limited: Published research has 
been mainly general (see, e.g., Draghici, 1996; Jarvinen & Karwowski, 
1992; Morgan & Austin, 1995). In many cases, existing solutions can be 
quite easily adapted for use in safety control systems.

3. WHAT IS AN ARTIFICIAL NEURAL NETWORK

In order for ANNs to work in different fields of applications, as 
mentioned earlier, single neurons have to have different properties and
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322 R.A. KOSINSKI AND C. KOZtOWSKI

the ANNs have to have different structures and sizes. Here, we present 
a simple type of an ANN with the main properties characteristic for all 
ANNs.

An ANN consists of a number of single elements, called neurons, 
which have rather simple dynamical properties (Figure 5). A neuron can 
be in one of two states: firing (S, =  1) or rest (Si =  0). The state of the 
neuron Si at the time t depends on the signals coming to it from other 
neurons Sj that were in the earlier states in time (t — 1):

Si (0 =  f [£j Jij Sj (t -  i)] (i)

where f is called activation function and—in the simplest case—is 
defined as

f(x) = 0 for x <  0,
f(x) — 1 for x ^  0 (2)

and the connections between the z-th neuron and other, y'-th, neurons 
(j =  1, 2, ... , N) are given by a synaptic matrix [J], As we can see, each 
neuron may be connected with a large number of other neurons (even 
with all the other neurons in the network). The shape of the synaptic 
matrix is appropriate for the task that can be realized by the network 
and is set in the process of the network’s learning. Then, during the 
work of the network, matrix [J] remains constant (Figure 6). The 
change of the state of a single neuron influences the states of all the 
other neurons, as results from the shape of matrix [J] (see Equation 1). 
This results in a time evolution of the states of the network. Here, the 
state of the network can be described as an N-bit word, which contains 
the states of all neurons: For example, the state (100 ... 1) means that 
Si =  1, S2 =  0, S3 = 0, ... , SN =  1. During time evolution, the 
network reaches its final state, which constitutes a desirable solution of 
the task solved by the network. An example of the time evolution of the 
network consisting of N =  8 neurons is shown on the right hand side of 
Figure 6. The initial state in the time t0 changes and after some time 
steps the network reaches a certain final state in t — tm. From this time 
the state of the network is constant: Such a case is a possible type of 
time evolution of the network. It may correspond to the case of 
recognizing a certain pattern, which belongs to a set of patterns stored 
in the network earlier, during the process of learning.
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ARTIFICIAL NEURAL NETWORKS FOR SAFETY CONTROL 323

Figure 5. Neuron Sj can have one of two states: 0 (rest) or 1 (firing). This depends 
on the states of other neurons Sv  S2, ... , Sk and the connections J,.,, Ji2, ... , J|k 
between these neurons and neuron S,. Activation function f represents the dynamic 
characteristic of the neuron.

00111001
11100101
10000011

00001111
00001111

Figure 6. An example of a very simple artificial neural network consisting of N =  8 
neurons. Only nonzero connections between neurons are marked. The state of 
this network is represented by a binary number with 8 digits. The state of the 
network changes in time, t0 is the initial state of the network, tm is the final state of 
the network. Starting from tm the state of the network is constant, which may 
correspond to the recognition of a certain pattern (here: 00001111).

It is worthwhile noticing that the properties of ANNs described 
earlier (e.g., two-state neurons, large number of neighbors of each neuron, 
learning ability, time evolution of the network) are characteristic for the 
human brain, as results from physiological investigations.

D
ow

nl
oa

de
d 

by
 [

18
5.

55
.6

4.
22

6]
 a

t 1
1:

25
 1

8 
M

ar
ch

 2
01

5 



324 R.A. KOSINSKI AND C. KOZLOWSKI

As we saw in the previous example, the network has no specific 
spatial structure, that is, the location of neurons can be arbitrary, 
provided the shape of matrix [J] is maintained. Such networks are called 
Hopfield-type networks. It is characteristic that the same neurons 
receive input signal (cf. Figure 6) and deliver output signal.

There are also many other structures of networks. Among the most 
important ones are the multilayer Perceptrons shown in Figure 7. In this 
network, there is an input layer of neurons, which transfer signals to the 
next layer, called the hidden layer. Then, signals reach the second 
hidden layer and so on. The last layer is the output layer, which delivers 
the output signal. Also in this case, the synaptic connections in the 
network are created in the process of learning. One of the most popular 
learning procedures for a multilayer perceptron is the back propagation 
method (for description see, e.g., reference by Patterson, 1996).

Inputs Outputs

Figure 7. Multilayer Perceptron is a neural network with neurons forming layers: 
input, some hidden layers, and an output layer.

Cellular artificial networks are an important type of ANNs. In this 
type of network, locations of neurons correspond to the location of the 
elements in the matrix (see Figure 8) and each neuron (except the ones 
at the edges of the matrix) has the same type of connection with its 
neighbors, the so-called cloning template (Chua & Yang, 1988). In this 
case, as in the case of the Hopfield-type networks (Hertz et al., 1995;
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ARTIFICIAL NEURAL NETWORKS FOR SAFETY CONTROL 325

Patterson, 1996), the same neurons receive input signals and deliver 
output signals. The applications of such networks are very interesting: 
They can detect the motion of objects (Chua & Yang, 1988), detect 
objects of a specified shape (Zarandy, Werblin, Roska, & Chua, 1994), 
remove noise from patterns (Yang, Yang, & Yang, 1994), and so forth. 
Figure 9 is an example of the work of a cellular neural network 
designed for detecting motion (Kacprzyk & Slot, 1995). Figure 9a shows 
the initial binary picture presented to the network, Figure 9b shows the 
next picture, in which some objects are shifted in comparison to those in 
Figure 9a, and Figure 9c shows the output of the network: The moving 
objects are extracted from the picture.

1 j N
I I  I I I
■ I I I I

I I  I I I

- 0 0 — - 0 .......0 - 0
Figure 8. Cellular neural network of the size M x N . The location of each neuron is 
described by indices ij.

We are not describing other important types of ANNs like Kohonen 
networks, ARTmap network, and so forth. There are also networks 
with continuous time, in which time evolution is described by a set of 
coupled differential equations, not by coupled maps, like in the case of 
discrete time networks presented earlier (see Equation 1). Moreover, in 
some applications, neurons with more than two stable states can be used 
(e.g., continuous states). A review of the different types of networks is 
presented in basic books on ANNs (see, e.g., Muller, Reinhardt, 
& Strickland, 1995; Patterson, 1996).
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326 R.A. KOSINSKI AND C. KOZLOWSKI

✓

Figure 9. Cellular neural network can detect moving objects. The figure on the left 
shows a certain picture in time t, the figure on the right shows the same picture in 
later time /  +  1, the picture at the bottom shows moving objects extracted by the 
network (Kacprzyk & Slot, 1995).

There are two main types of implementations of ANNs. One is 
a computer simulation of ANNs, sometimes with computers with special 
architecture, which accelerates the operation of the network. In this 
case, it is relatively easy to modify the structure and the internal 
parameters of the network. The other type of implementation of ANNs 
is the realization of an ANN as an electronic circuit consisting of 
discrete elements or as an integrated electronic circuit. The latter type of 
implementation is much more expensive than the former. For instance, 
designing a separate microchip containing an ANN is a complex task 
requiring high technology laboratories. Moreover, in such a case no 
changes of the ANN structure are possible. Therefore, this type of 
implementation is rather used in the case of ANNs that are control 
elements produced in large scale industrial manufacturing.
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ARTIFICIAL NEURAL NETWORKS FOR SAFETY CONTROL 327

4. REQUIREMENTS FOR ANNs IN SAFETY ENGINEERING

There are no universal or reliable techniques that allow designing ANNs 
for safety engineering purposes, however, some useful steps have been 
taken (Draghici, 1996; Jarvinen & Karwowski, 1992; Kuivanen, 1995; 
Morgan & Austin, 1995). In this process, general requirements typical 
for safety robotics can be adapted (Kuivanen, 1995). Such a system 
must comply with the requirements of the EN and ISO standards (ISO 
9001:1994; International Organization for Standardization, 1994).

Safety requirements depend on the type of implementation of an 
ANN. In all types of implementations, special attention must be paid to 
desirable safety critical properties. In the process of designing an ANN 
for safety control systems, some specific stages can be distinguished 
(Morgan & Austin, 1995).

System specification is a stage at which a description of what the ANN 
should do is made. It defines the type, internal structure, and the 
number of neurons in the network. A set of dangerous situations (and 
the ANN states referring to them) should be chosen at this stage, too. 
Next, a proper learning algorithm, in which the possibility of undesirable 
network reaction is minimalized, should be constructed.

Implementation. In the case of a computer implementation of an ANN, 
it is necessary to construct a numerical algorithm simulating its operation 
with a high level of reliability. In standard programs prepared by 
professionals, there still are errors: approximately one per each 300 lines. 
Therefore, special procedures of preparing numerical programs (widely 
used, e.g., in aircraft computers) should be used for safety applications 
(Rodd, 1995). The process of testing a program that simulates an ANN 
should reveal all errors that would lead to a dangerous reaction of an 
ANN (e.g., in the process of generalization). In the case of hardware 
implementation, special attention should be paid to the quality of the 
elements used in the circuit and to manufacturing. The system should be 
able to tolerate a certain amount of damage of discrete elements. This 
can be achieved by a proper structure of the ANN and its parallel 
processing of information.

Verification and validation is a process in which the correct operation of 
the system is controlled. After ANNs’ learning with the training set of 
data, their operation is controlled using a separate set of test data. In 
the behavior of the whole ANN system, unexpected and potentially
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328 R.A. KOSINSKI AND C. KOZtOWSKI

dangerous situations should not occur, or they should be eliminated by 
a correct setting of adjustable parameters.

Reliability of the system depends on many factors: the structure of the 
system, the size of the network, the reliability of discrete elements, and 
so forth. For instance, a typical level of reliability accepted in aircraft 
engineering is obtained if the probability of occurrence of critical 
damage is less than 10-9 per hour of work (Rodd, 1995). A similar level 
of reliability of ANNs should be achieved in control systems. There are 
many methods of increasing the reliability of complex systems. In 
particular, at the stage of designing the structure of an ANN, redundant 
neurons can be added to the network in order to obtain a more reliable 
system (Johnson, Picto, & Hallam, 1993; Morgan & Austin, 1995).

There are also some specific problems that are immanently connected 
with applications of ANNs. As mentioned earlier, in the process of 
designing an ANN, the explicit algorithm of its operation is not known. 
Therefore, we do not known all the possible responses of an ANN to 
coming input signals. A proper process of learning should eliminate 
undesirable network reactions, however, the probability of a wrong 
reaction of an ANN is not zero.

Another problem of ANN applications as control systems is connected 
with their satisfactory speed of processing information. The process of 
analyzing a large amount of information coming from TV sensors (e.g., 
in the case of observing a robot’s surroundings) requires ANNs with 
a rather high number of neurons. Despite the parallel processing of 
information in the network, time necessary to generate a proper output 
signal can be considerable, and sometimes too long for the work of an 
ANN control system as a real-time element. Such problems are common 
in the rapidly expanding area of virtual reality systems (Lin & Kuo,
1997). Of course, satisfactory speed of ANNs elements can be achieved 
by using a computer with high speed processors or, in the case of 
a hardware implementation of the network, by using electronic elements 
with a high speed of commutations.

5. PROSPECTS OF APPLICATIONS OF ANNs 
IN SAFETY CONTROL SYSTEMS

A number of existing applications of ANNs can be rather easily adapted 
to safety control. The application of an odor recognition system as
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ARTIFICIAL NEURAL NETWORKS FOR SAFETY CONTROL 329

a system for detecting dangerous levels of different compounds emitted 
in industrial manufacturing processes is one such possibility. An example 
is schematically shown in Figure 10 (Corcoran & Lowery, 1995). A set 
of sensors sensitive to the presence of different compounds (e.g., 
changing their resistivity) is an important part of a system like that. It 
makes analyzing the mixture of different compounds in the air possible

Figure 10. Schematic view of an Odour Sensing System based on a 3-layer Perceptron 
and learned with a back propagation algorithm (Corcoran & Lowery, 1995).

By using specific electrodes as sensors it is also possible to detect the 
level of dangerous compounds in water (Manvarig, 1995).

Particularly interesting applications of ANNs in safety control can 
be connected with robots. ANNs can detect dangerous situations at 
robotized work stands. The currently used systems controlling safety at 
work stands with stationary robots (based, e.g., on light curtains) very 
frequently stop the robot in situations that are not, in principle, 
dangerous. This results in losses in the manufacturing process. An ANN 
control system can intelligently analyze the surroundings of a robot and 
react only in really dangerous situations. For instance, such a control 
system can detect the size and velocity of an object that is approaching 
a robot and that might collide with it, and stops it only if this object is 
large enough and is moving with a certain velocity (e.g., typical for 
a human). An example of such a system is shown in Figure 11 
(Kosiriski, 1996).

Another interesting application of an ANN is its use as a navigation 
system in a mobile robot. Such robots would substitute the work of men 
in dangerous zones (e.g., with a high level of radiation) or in areas with
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TV Camera

Artificial
Neutral
Network

-
1 ------ !—

Stop loop

R ob ot

in .

PC computer

C ontro l m o n ito r

Figure 11. Schemalic view of a Control System for detecting dangerous situations at 
a work stand with a robot, based on an artificial neural network (Kosinski, 1996).

difficult access. There is extensive literature devoted to such applications. 
However, presently, the level of control of robot motion performed by 
ANN systems is still very distant from the level characteristic for the 
human brain. Problems appearing in such control are really extremely 
complex. In a mobile robot’s surroundings there can be objects of 
different and changing size, moving with different and changing velocities. 
Moreover, the conditions of vision can also change, sometimes abruptly, 
and so forth. Analysis of this large stream of information should result 
in proper commands to the engines and brakes of the robot. Such 
problems are easily solved by a human, for example, when driving in 
heavy traffic. By comparison, a contemporary ANN system can drive 
a car on a rather empty highway with a very limited number of 
potentially dangerous situations, like passing approaching cars, simple 
overtaking cars moving with constant velocity, and so forth (Kaiser 
& Wallner, 1996).

In view of the advantages of ANNs and the very significant 
development in the field of theoretical and practical treatment of ANNs, 
we can expect that in the nearest future the number of applications of 
ANNs in the systems used in safety control will significantly increase.
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