PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of selected micro additives content on thermal properties of gypsum

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented work focuses on the influence of the micromaterials (microspheres, aerogel and polymer hydroxyethyl methyl cellulose) on thermal properties of gypsum. The polymer and the aerogel are used as additives in the weight fraction, up to 1% of pure gypsum and the microspheres in the weight fraction, up to 10% of gypsum. The water-to-gypsum ratio was at the level of 0.75. Non-stationary method and Isomet 2114 experimental setup were applied for the purpose of measurements of thermal parameters. The coefficient of thermal conductivity λ, the specific heat Cp and the thermal diffusivity a were determined. The gypsum with polymer content resulted in more than 15% lower thermal conductivity in comparison to the specimen without HEMC as a result of the different density and total porosity of the material. The gypsum with aerogel and microspheres content resulted in more than 8% and 7% respectively lower values in comparison to the pure gypsum without micro additives. Decrease in thermal conductivity, thermal diffusivity and density with added micro product were observed as a result of structure modifications of the gypsum product.
Rocznik
Strony
69--79
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • PhD Student, Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
  • PhD; Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
  • PhD; Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
  • DSc, PhD; Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
Bibliografia
  • [1] Węglorz, M. (2014). Selected Aspects of Sustainable Civil Engineering in research works of professor Andrzej Ajdukiewicz. Architecture Civil Engineering Environment, 7(1), 41-47.
  • [2] Milošević, P. (2012). Sustainable Eco Planning Strategies in East Europe (Case Study of Belgrade). Architecture Civil Engineering Environment, 5(4), 29-42.
  • [3] Heim, D., Mrowiec, A., Prałat, K., and Mucha, M. (2018). Influence of Tylose MH1000 content on gypsum thermal conductivity. J. Mater. Civ. Eng., 30(3), March.
  • [4] Arpe, H. J. (1984). Ullmann’s Encyclopedia of Industrial Chemistry. Calcium Sulfate. Vol.A4, Wiley-VCH, Verlag, Germany, 555-584.
  • [5] Duggal S. K., Building Materials, A.A. Balkema Publishers, Rotterdam, 1998.
  • [6] Ragsdale L. A., Raynham E. A., Building Materials Technology, Edward Arnold, London, 1972.
  • [7] Arikan, M., and Sobolev, K. (2002). The optimization of a gypsum-based composite material. Cem. Concr. Res., 32(11), 1725-1728.
  • [8] De Sensale, G. M. (2010). Effect of rice - husk ash on durability of cementitious materials. Cem. Concr. Compos., 32, 718-725.
  • [9] Kim, S. (2009). Incombustibility, physic-mechanical properties and TVOC emission behavior of the gypsum-rice husk boards for wall and ceiling materials for construction. Ind. Crops. Prod., 29, 381-387.
  • [10] Khali, A. A., Tawfik A., Hegazy A. A., and El-Shahat M. F. (2013). Effect of different modes of silica on the physical and mechanical properties of plaster composites. J. Mater. Constr., 63(312), 529-537.
  • [11] Maghsoudi, K., and Motahari, S. (2018). Mechanical, thermal, and hydrophobic properties of silica aerogelepoxy composites. J. Appl. Polym. Sci., 135(3), 45706-45714.
  • [12] Sletnes, M., Jelle, B. P., and Risholt, B. (2017). Feasibility study of novel integrated aerogel solutions. Energy Procedia, 132, 327-332.
  • [13] Chen, J. J., Ng, P. L., Li, L. G., and Kwan, A. K. H. (2017). Production of high-performance concrete by addition of fly ash microsphere and condensed silica fume. Procedia Eng., 172, 165-171.
  • [14] Kwan, A. K. H., and Li, Y. (2013). Effects of fly ash microsphere on rheology, adhesiveness and strength of mortar. Constr. Build. Mater., 42, 137-145.
  • [15] Kwan, A. K. H., and Chen, J. J. (2013). Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technol., 234, 19-25.
  • [16] Hewit, G. F., Shires, G. L., and Bott, T. R. (1994). Process heat transfer. CRC Press LCC, New York, 16-18.
  • [17] Adrien, J., Meille, S., Tadier, S., Maire, E., and Sasaki, L. (2016). In-situ X-ray tomographic monitoring of gypsum plaster setting. Cem. Concr. Res., 82, 107-116.
  • [18] Karni, J., and Karni, E. (1995). Gypsum in construction: Origin and properties. Mater. Struct., 28(2), 92-100.
  • [19] Yu, Q. L., and Brouwers, H. J. H. (2012). Thermal properties and microstructure of gypsum board and its dehydration products: A theoretical and experimental investigation. Fire Mater., 36(7), 575-589.
  • [20] Carson, J. K., Lovatt, S. J., Tanner, D. J., and Cleland, A. C. (2005). Thermal conductivity bounds for isotropic, porous materials. Int. J. Heat Mass Transfer, 48(11), 2150-2158.
  • [21] Martias, C., Joliff, Y., Nait-Ali, B., Rogez, J., and Favotto, C. (2013). A new composite based on gypsum matrix and mineral additives: Hydration process of the matrix and thermal properties at room temperature. Thermochimica Acta, 567, 15-26.
  • [22] Gruescu, C., Giraud, A., Homand, F., Kondo, D., and Do, D. P. (2007). Effective thermal conductivity of partially saturated porous rocks. Int. J. Solids Struct., 44(3-4), 811-833.
  • [23] Kamseu, E., Bignozzi, M. C., Melo, U. C., Leonelli, C., and Sglavo, V. M. (2013). Design of inorganic polymer cements: Effects of matrix strengthening on microstructure. Constr. Build. Mater., 38, 1135-1145.
  • [24] Kamseu, E., Nait-Ali, B., Bignozzi, M. C., Leonelli, C., Rossignol, S., and Smith, D. S. (2012). Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Eur. Ceram. Soc., 32(8), 1593-1603.
  • [25] Ru, W., Xin-Gui, L., and Pei-Ming, W. (2006). Influence of polymer on cement hydration in SBRmodified cement pastes. Cem. Concr. Res., 36(9), 1744-1751.
  • [26] Choi, H., and Noguchi, T. (2015). Modeling of mechanical properties of concrete mixed with expansive additive. Int. J. Concr. Struct. Mater., 9(4), 391-399.
  • [27] Yan, Y., Yu, Z., and Yingzi, Y. (2012). Incorporation superabsorbent polymer (SAP) particles as controlling pre-existing flaws to improve the performance of engineered cementitious composites (ECC). Constr. Build. Mater., 28(1), 139-145.
  • [28] Knapen, E., and Van Gemert, D. (2009). Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem. Concr. Res., 39(1), 6-13.
  • [29] Garbalińska, H., and Strzałkowski, J. (2016). Thermal and strength properties of lightweight concretes with the addition of aerogel particles. Adv. Cem. Res., 28(9), 567-575.
  • [30] Schiavoni, S., D’Alessandro, F., Bianchi, F., and Astrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renew. Sust. Energ. Rev., 62, 988-1011.
  • [31] Pichór, W. (2009). Properties of fiber reinforced cement composites with cenospheres from coal ash. Proc. Int. Symp. Brittle Matrix Composites 9, Editors: Brandt A. M., Olek J., Marshall I. H., 245-254.
  • [32] Baspinar, M. S., and Kahraman, E. (2011). Modifications in the properties of gypsum construction element via addition of expanded macroporous silica granules. Constr. Build. Mater., 25, 3327-3333.
  • [33] Hand, R. J. (1997). Calcium sulphate hydrates. Brit. Ceram. Trans., 96(3), 116-120.
  • [34] Dudek, E., Mosiadz, M., and Orzepowski, M. (2007). Uncertainties of resistors temperature coefficients. Meas. Sci. Rev., 7(3), 23-26.
  • [35] Glinicki, M. A., Jaskulski, R., Pichór, W., Dąbrowski, M., and Sobczak, M. (2015). Investigation of thermal properties of shielding concrete., Proc. Int. Symp. Brittle Matrix Composites 9, Editors: Brandt A. M., Olek J., Glinicki M. A., Leung C. K. Y., Lis J., 371-380.
  • [36] Kušnerová, M., Valíček, J., Harničárová, M., Hryniewicz, T., Rokosz, K., Palková, Z., Václavík, V., Řepka, M., and Bendová, M. (2013). A proposal for simplifying the method of evaluation of uncertainties in measurement results. Meas. Sci. Rev., 13(1), 1-6.
  • [37] Mróz, P., and Mucha, M. (2017). Hydration kinetics of calcium sulphate hemihydrate modified by water soluble polymer. Int. J. Eng. Res. Sci., 3(6), 5-13.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d07aed9f-ff82-4334-af76-3acc925fc1ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.