PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materials with shape memory effect for applications in maritime

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Materiały z pamięcią kształtu do zastosowań morskich
Języki publikacji
EN
Abstrakty
EN
In this review it is presented the insight of challenges faced by all branches of industry in the new age, and especially the maritime industry, strive for sustainable development, better energy control, use of materials with functional properties such as shape memory, all in the direction of increasing safety and comfort. Therefore, the development of new materials with shape memory, which is associated with the introduction of optimized production and the achievement of better func-tional properties. This leads to new applications in different systems and possible use on devices, which meet the rigorous requirements of the modern industry. The research into new materials with shape memory effect and their applied use in maritime is a challenge that many researchers have encountered in recent decades, and this is why in this paper we look at the basic engineering aspect of these materials and their current as well as future applications in the maritime industry. An overview of several innovations that testify shape memory effect and superelasticity in different maritime fields will be presented in this review.
PL
W artykule przedstawiono badania prowadzone nad nowymi materiałami z pamięcią kształtu. Opisano podstawowe aspekty inżynieryjne tych materiałów, ich właściwości funkcjonalne oraz przyszłe wykorzystanie w obszarze morskim. Dokonano przeglądu niektórych zastosowań materiałów z efektem shape memory alloy (SMA), pokazując ich innowacyjne rozwiązania. Opracowanie optymalnego procesu technologicznego do produkcji materiałów SMA i transfer wiedzy na po-ziomie przemysłowym stworzy nowe perspektywy dla żeglugi morskiej.
Rocznik
Strony
25--41
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • University of Montenegro, Maritime Faculty Kotor, Dobrota 36 Str., 85330 Kotor, Montenegro
  • University of Maribor, Faculty of Mechanical Engineering, Smetanova 17 Str., 2000 Maribor, Slovenia
Bibliografia
  • [1] Alaneme K. K., Okotete E. A., Reconciling viability and cost-effective shape memory alloy options — a review of copper and iron based shape memory metallic systems, ‘Engineering Science and Technology, an International Journal’, 2016, 19, pp. 1582–1592.
  • [2] Ameendraraj S., Fatigue behaviour of copper zinc aluminum shape memory alloys, Master thesis, University of Manitoba, 1998.
  • [3] Baz A., Ro J., Mutua M., Gilheany J., Active Buckling Control of Nitinol-Reinforced Composite Beams, ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures- -Session 1992, 10, pp. 167–176.
  • [4] Bhattacharya K., Conti S., Zanzotto G., Zimmer J., Crystal symmetry and the reversibility of mar-tensitic transformations, ‘Nature’, 2004, 428, pp. 55–59.
  • [5] Dasgupta R., A look into cu-based shape memory alloys: present scenario and future prospects, ‘Journal Material Research’, 2014, 29 (16), pp. 1681–1698.
  • 6] Duerig T. W., Melton K. N., Proc. of SMA ‘86, Guilin 1986, 397.
  • [7] Duerig T. W., Melton K. N., Stoeckel D., Wayman C. M., Engineering aspects of Shape Memory Alloys, Butterworth — Heinemann, London 1990.
  • [8] Dye T. E., An Experimental Investigation of the Behavior of Nitinol, Master thesis, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 1990.
  • [9] European Patent Application, EP 3 290 768 A1, Published in accordance with Art. 153(4) EPC, 2016.
  • [10] Funakubo H., Shape Memory Alloys, Gordon and Breach, London 1984.
  • [11] Gilbenson R. G., Working With Shape Memory Wires, Mondotronics, 1991.
  • [12] Graesser E. J., Cozzarelli F. A., Shape Memory Alloys as New Materials for Aseimic Isolation, ‘Journal of Engineering Mechanics’, 1992, 117 (11), pp. 2590–2608.
  • [13] Gupta P. K., Seena P., Rai R. N., Studies on shape memory alloys — a review, ‘International Journal Advance Engineering’, 2012, 3 (1), pp. 378–382.
  • [14] Hodgson D. E., Shape memory applications, ‘Shape Memory Alloys’, 1990, Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook Committee, pp. 897–902.
  • [15] Huang W., Shape Memory Alloys and their Application to Actuators for Deployable Structures, PhD thesis, University of Cambridge, Department of Engineering, 1998.
  • [16] Humbeeck J. van, Damping properties of shape memory alloys during phase trans-formation,‘Journal Physic IV’, 1996, 06 (C8), pp. C8-371–C8-380.
  • [17] Humbeeck J. van, Kustov S., Active and passive damping of noise and vibrations through shape memory alloys: applications and mechanisms, ‘Smart Material Structure’, 2005, 14 (5), pp. S171–S181.
  • [18] Humbeeck J. van, Shape Memory Alloys: A Material and a Technology, ‘Advanced Engineering Materials’, 2001, 3, pp. 837–850.
  • [19] Jia J., Rogers C. A., Formulation of a Laminated Shell Theory Incorporating Embedded Distributed Actuators, ‘Journal of Mechanical Design’, 1990, 112, pp. 596–604.
  • [20] Juan J. S., Applications of Shape Memory Alloys to the Transport Industry, International Congress on Innovative Solutions for the Advancement of the Transport Industry, San Sebastian, October 2006.
  • [21] Kakizawa T., Ohno S., Utilization of Shape Memory Alloy as a Sensing Material for Smart Structures, in Advanced Composite Materials in Bridges and Structures, 1996, pp. 67–74.
  • [22] Kim S., Passive Control Techniques in Earthquake Engineering, Proceedings of the SPIE, 1995, 2445, pp. 214–224.
  • [23] Kocurek C., Green C., Patent Application Publication, US 2013/0015376 A1, United States, 2013.
  • [24] Kubenova M., Processing and martensitic transformations of NiTi based alloys, PhD thesis, Brno University of Technology, 2014.
  • [25] Kumar P. K., Lagoudas D. C., Introduction to shape memory alloys, [in:] Shape Memory Alloys.Modelling and Engineering Applications, 2008, pp. 1–51.
  • [26] Liu Y., Some factors affecting the transformation hysteresis in shape memory alloys, [in:] Shape Memory Alloys, ed. H. R. Chen, Nova Science Publishers Inc., 2010, pp. 361–369.
  • [27] Nemat-Nasser S., Guo W. G., Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, ‘Mech. Mater.’, 2006, 38, pp. 463–474.
  • [28] Ortin J., Dealey L., Hysteresis in shape memory alloys, ‘International Journal Non-Linear Mechanic’, 2002, 37, pp. 1275–1281.
  • [29] Otsuka K., Wayman C. M., Shape Memory Materials, Cambridge University Press, Cambridge 1998.
  • [30] Perkins J., Muesing W. E., Martensitic transformations cycling effect on Cu–Zn–Al shape memory alloys, ‘Metall. Trans. A’, 1983, 14 (1), pp. 33–36.
  • [31] Prasad D. S., Shoba C., Varma K. R., Damping behavior of commonly used reinforcement powders — an experimental approach, ‘International Journal Engineering Science Technology’, 2015, 18, pp. 674–679.
  • [32] Proft J. L., Duerig T. W., Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London 1990.
  • [33] Stoeckel D., Shape-memory alloys prompt new actuator designs, ‘Advanced Materials and Processes’, 1990, 138, pp. 33–38.
  • [34] Stoeckel D., The Shape Memory Effect — Phenomenon, Alloys and Applications, ‘Proceedings: Shape Memory Alloys for Power Systems EPRI’, 1995, pp. 1–13.
  • [35] Sun G., Sun C. T., One-Dimensional Constitutive Relation for Shape-Memory Alloy-Reinforced Composite Lamina, ‘Journal of Materials Science’, 1993, 28, pp. 6323–6328.
  • [36] Whitcher F. D., Simulation of in Vivo Loading Conditions of Nitinol Vascular Stent Structures, ‘Computers & Structures’, 1997, 64 (5/6), pp. 1005–1011.
  • [37] Witting P. R., Cozzarelli F. A., Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing, Technical Report NCEER-92-0013, 1992.
  • [38] Wittorf M., Browne A., Johnson N., Brown J. H., Patent Application Publication, US008299637B2, United States, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d06dab17-6205-4494-9493-b16bc1f4a51e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.