PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected properties of polypropylene-BaSO4 composites after UV exposure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a preliminary study on the effect of an addition of barium sulfate (BaSO4) particles on the mechanical properties of polypropylene (PP) and an evaluation of the effectiveness of this additive in protecting the material against UV rays. Tests were carried on PP samples filled with BaSO4 powder and on samples covered with a protective coating based on BaSO4. Samples of the materials were exposed to UV-C rays for 1000 hours. After exposure, specimens were subjected to static three-point bending tests and hardness examination. Based on the obtained results, it was concluded that BaSO4 reduces the decrease in flexural strength and in hardness caused by exposure to UV-C rays by half in comparison with neat PP. The action of BaSO4 particles as a filler of PP and as a component of a coating applied on the surface of the sample results in similar anti-UV protection of the material. BaSO4 seems to be a commonly available and inexpensive anti-UV protector for plastics.
Rocznik
Strony
50--53
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Baum B., Deanin R.D., Controlled UV degradation in plastics, Polymer-Plastics Technology and Engineering 1973, 2, 1, 1-28, DOI: 10.1080/03602557308545012.
  • [2] Fotopoulou K.N., Karapanagioti H.K., Degradation of various plastics in the environment, Hazardous Chemicals Associated with Plastics in the Marine Environment, The Handbook of Environmental Chemistry, Vol 78, 2017, DOI: 10.1007/698_2017_11.
  • [3] Lee B.S., Lee D.C., Surface degradation properties of ultraviolet treated epoxy/glass fiber, IEEE Transactions on Dielectrics and Electrical Insulation 1999, 6(6), 907-912, DOI: 10.1109/94.822036.
  • [4] Tanks J., Naito K., UV durability assessment of a thermoplastic epoxy-based hybrid composite rod for structural reinforcement and retrofitting, Journal of Building Engineering 2022, 48, 103922, DOI: 10.1016/j.jobe.2021.103922.
  • [5] Toroń B., Szperlich P., Kozioł M., SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors – the influence of SbSI nanowires conglomeration on piezoelectric properties, Materials 2020, 13(4), article 902, DOI: 10.3390/ma13040902.
  • [6] Szperlich P., Piezoelectric A15 B16 C17 compounds and their nanocomposites for energy harvesting and sensors: A review, Materials 2021, 14, 22, 6973, DOI: 10.3390/ma14226973.
  • [7] Hejna A., Korol J., Kosmela P., Kuzmin A., Piasecki A., Kulawik A., Chmielnicki B., By-products from food industry as a promising alternative for the conventional fillers for wood-polymer composites, Polymers 2021, 13, 6, article 893, DOI: 10.3390/polym13060893.
  • [8] Korol J., Hejna A., Burchart-Korol D., Wachowicz J., Comparative analysis of carbon, ecological, and water footprints of polypropylene-based composites filled with cotton, jute and kenaf fibers, Materials 2020, 13, 16, article 3541, DOI: 10.3390/ma13163541.
  • [9] Silva M.A.G., Aging of GFRP laminates and confinement of concrete columns, Composite Structures 2007, 79, 1, 97-106, DOI: 10.1016/j.compstruct.2005.11.033.
  • [10] Kozioł M., Toroń B., Szperlich P., Jesionek M., Fabrication of a piezoelectric strain sensor based on SbSI nanowires as a structural element of an FRP laminate, Composites Part B 2019, 157, 58-65, DOI: 10.1016/j.compositesb.2018.08.105.
  • [11] Stewart A., Douglas E.P., Accelerated testing of epoxy-FRP composites for civil infrastructure applications: Property changes and mechanisms of degradation, Polymer Reviews 2012, 52, 2, 115-141, DOI: 10.1080/15583724.2012.668152.
  • [12] Kozioł M., Effect of thread tension on mechanical performance of stitched glass fibre-reinforced polymer laminates –experimental study, Journal of Composite Materials 2013, 47, 16, 1919-1930, DOI: 10.1177/0021998312452179.
  • [13] Vrinceanu N., Coman D., UV Protection: Historical Perspectives and State-of-the-Art Achievements, In: Sustainable Practices in the Textile Industry, eds. L.J. Rather, M. Shabbir, A. Haji, Wiley Online Library, 2021, DOI: 10.1002/9781119818915.ch7.
  • [14] https://ebrary.net/66693/education/carbon_black_protection (access on 2022-01-09).
  • [15] Bragaglia M., Cherubini V., Nanni F., PEEK – TiO2 composites with enhanced UV resistance, Composites Science and Technology 2020, 199, article 108365, DOI: 10.1016/j.compscitech.2020.108365.
  • [16] Kotlik P., Doubravova K., Horalek J., Kubac L., Akrman J., Acrylic copolymer coatings for protection against UV rays, Journal of Cultural Heritage 2014, 15, 1, 44-48, DOI: 10.1016/j.culher.2013.01.002.
  • [17] https://www.krylon.com/products/uvresistant-clear-coating/ (access on 2022-01-09).
  • [18] El-Ghaffar M.A.A., Abdelwahab N.A., Fekry A.M., Sanad M.A., Sabaa M.W., Soliman S.M.A., Polyester-epoxy resin/conducting polymer/barium sulfate hybrid composite as a smart eco-friendly anticorrosive powder coating, Progress in Organic Coatings 2020, 144, article 105664, DOI: 10.1016/j.porgcoat.2020.105664.
  • [19] https://holtex.pl/oferta/uszczelnienia-techniczne/plyty-uszczelkowe/frenzelit/novaflon-200 (access on 2022-01-09).
  • [20] Karger-Kocsis J., Barany T., Polypropylene Handbook, Springer, Germany, 2019.
  • [21] Vidinejevs S., Chatys R., Aniskevich A., Jamroziak K., Prompt determination of the mechanical properties of industrial polypropylene sandwich pipes, Materials 2021, 14, 9, article 2128, DOI: 10.3390/ma14092128.
  • [22] Wang K., Wu J., Yeb L., Zeng H., Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites, Composites Part A 2003, 34, 12, 1199-1205, DOI: 10.1016/j.compositesa.2003.07.004.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d05fa678-b588-4a07-b252-d0cb1198c17f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.