PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Steel Cord Tension During the Lapping on Steel Cord Straightness After Lapping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the variable parameters in steel cord twisting technologies is the steel cord tension before final reel. Changing this parameter is used to produce steel cord with high quality of straightness. Steel cord straightness is the most important technological parameter after tensile strength. It is simple to change the value of steel cord tension with special mechanisms or devices in composition of cable machines and twisting machines. It is very important to know the measures of tension setting. Low tension causes bad quality of steel cord and defects. High tension may brake steel cord during the twisting and lapping. Also high tension may change the mechanical properties of steel wire in the steel cord construction. The influence of steel cord tension in the range from 9 N to 30 N on active equivalent stresses in wire cross section and macro displacements of wire contact points in steel cord construction was shown. Effect of steel cord tension during the lapping on steel cord straightness after lapping was shown. In this research the optimal tension for producing steel cord 2x0.30HT was defined with numerical simulation, finite element analysis and criteria method. The optimal value of tension for other steel cord constructions will change, because of number of wires and its hardness.
Rocznik
Strony
36--45
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Poland
  • P.O. Sukhoi State Technical University of Gomel, Republic of Belarus
  • P.O. Sukhoi State Technical University of Gomel, Republic of Belarus
Bibliografia
  • 1.Bely, V. D. and Goncharenko N. K. (1971), Issledovaniye NDS kanatov seriynogo izgotovleniya posle predvaritel'noy deformatsii [SSS research of serial production ropes after preliminary deformation] «Stal'nyye kanaty», vol. 8 - K., Tekhnika. p. 310;
  • 2.Blazhej, R. Jurdziak, L. Kozlowski, T. Kirjanow A. (2018), The use of magnetic sensors in monitoring the condition of the core in steel cord conveyor belts. Tests of the measuring probe and the design of the DiagBelt system, Measurement, Volume 123, pp. 48-53;
  • 3. Bobarikin, Yu. L. and Martjanov Yu. V. (2019), Vliyaniye parametrov deformatsii metallokorda pered namotkoy na yego pryamolineynost' posle namotki [Effect of deformation parameters of a steel cord before winding on its straightness after winding] Vestnik GGTU n.a. P. O. Sukhoi. - 2019. - №1. - p. 50-55.
  • 4. Bobarikin, Yu. L. and Martyanov Yu. V. (2016), Vliyaniye diametra deformiruyushchego rolika na makroperemeshcheniya v metallokorde [Influence of the diameter of a deforming roller on macroscopic displacement in a steel cord] Modern problems of mechanical engineering: mes. Report XI Intern. Scientific-tech. Conf. (scientific reading, dedicated to P. O. Sukhoi), Gomel, Oct. 20-21. 2016 M-education Resp.Belarus, GSTU n.a. P. O. Sukhoi, a branch of PJSC "Company" Sukhoi "OKB" Sukhoi"; under total Ed. S.I. Timoshin. - Gomel: GSTU n.a. P. O. Sukhoi, 2016.p. 117-118
  • 5. Bobarikin, Yu. L. Avseykov, S. V. Martyanov, Yu. V. Vedeneyev A. V. (2015), Opredeleniye diametra rolika obratnoy deformatsii dlya kanatnoy mashiny v uzle namota metallokorda [Determination of the diameter of the deformation roller for the reverse deformation in cable machine at the place of steel cord winding] ISSN 2076-2151. Obrabotka materialov davleniyem. № 1 (40); (in Russian);
  • 6. Bobarikin, Yu. L. Martyanov, Yu. V. and Vedeneyev A. V. (2019), Vliyaniye natyazheniya metallokorda pri namotke na yego pryamolineynost' [The effect of the tension of the steel cord during winding on its straightness] Chernye metally. 2019. No. 4. pp. 46-50.
  • 7. Bobarikin, Yu.L. Martyanov, Yu.V. Vedeneyev A.V. (2017), Effect of deformation parameters. XVIІІ International scientific conference "New technologies and achievements in metallurgy, production engineering and physics" A collective monograph edited by J. Borica, D. Musial: monograph No. 68, Chestohowa (Poland). p. 133-141;
  • 8. Fedorko, G. Molnár, V. Ferková Ž., Peterka, P. Krešák, J. Tomašková M. (2016), Possibilities of failure analysis for steel cord conveyor belts using knowledge obtained from non-destructive testing of steel rop es. Engineering Failure Analysis, Volume 67, pp. 33-45;
  • 9. Gattesco, N. Amadio, C. and Bedon C. (2015). “Experimental and numerical study on the shear behaviour of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord reinforced repointing”, Engineering Structures, 90(5):pp. 143-157;
  • 10. Girskas, G. and Nagrockienė D. (2016), The Use of Steel Cord Scrap in Concrete, Construction Science, Vol. 18, pp. 22-26.
  • 11. Jin, G. Liu, Y. Liu W. (2009), Spin squeezing in a generalized one-axis twisting model, International Journal of Theoretical Physics, Vol. 58, Issue 8, pp. 2414-2417;
  • 12. Kalent'yev, Ye. A. and Tarasov V. V. (2010), Chislennyy analiz NDS ka-nata s lineynym kasaniyem pri rastyazhenii i kruchenii, Institut prikladnoy mekhaniki [Numerical analysis of the SSS of a strand with linear tangency under tension and torsion]. Institute of Applied Mechanics, Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia, 2010. - pp.16-28;
  • 13. Kapp, M.W. Hohenwarter, A. Wurster, S. Yang, B. Pippan R. (2016), Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel, Acta Materialia, Vol. 106, pp. 239-248;
  • 14. Korunović, N. Fragassa, C. Marinković, D. Vitković, N. Trajanović M. (2019), Performance evaluation of cord material models applied to structural analysis of tires. Composite Structures, Volume 224; pp. 1-13;
  • 15. Kozłowski, T. Błażej, R. Jurdziak, L. Kirjanów-Błażej A. (2019), Magnetic methods in monitoring changes of the technical condition of splices in steel cord conveyor belts. Engineering Failure Analysis, Volume 104, pp. 462-470;
  • 16. Kruzel, R. and Ulewicz M. (2019), The fatigue strength of bidirectionally bent steel cord used in tires, Engineering Failure Analysis, Vol. 105, pp. 176-181;
  • 17. Matsumoto, Yu. Miyashita, T. Takai K. (2018), Hydrogen behavior in high strength steels during various stress applications corresponding to different hydrogen embrittlement testing methods, Materials Science and Engineering: A, Vol. 735,pp. 61-72;
  • 18. Sukhorukov, V.V. Vorontsov, A.N. Volokhovskiy V.Yu. (2013), Control of hoisting rope wear for hot metal cranes of metallurgical enterprises. Chernye metally. No. 10. pp. 56-60.
  • 19. Vedenee, A. V. Zheltkov, A.S. Filippov, V. (2000), Analiz deformatsiy elementov vitykh struktur i ikh vliyaniye na poteri prochnosti pri proizvodstve metallokorda [Analysis of the deformations of elements of twisted structures and their effect on the loss of strength in the production of steel cord] News of the National Academy of Sciences of Belarus. M3. pp. 23-27;
  • 20. Wang, L. Xue, Z. Zhu, H. Lei J. (2019), Thermodynamic analysis of precipitation behavior of Ti-bearing inclusions in SWRH 92A tire cord steel, Results in Physics,Volume 14, pp. 1-7;
  • 21. Wei, D. Min, L. Li, X. Fang, F. Xie, Z. Jiang J. (2019), Microstructure and mechanical properties of heavily cold drawn pearlitic steel wires: Effects of low temperature annealing, Materials Characterization, Vol. 153, pp. 108-114.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d05ab3a5-5470-477a-b6be-b63fd66a49a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.