Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show that if there exists a second κ-category (or κ-Baire) SI-space, then there exists a second κ-category (resp. κ-Baire) MI-space. Next we discuss some properties of real functions on such spaces.
Słowa kluczowe
Rocznik
Tom
Strony
99--107
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Institute of Mathematics Pomeranian University ul Arciszewskiego 22a, 76-200 Słupsk, Poland
Bibliografia
- [1] S.P. Ponomarev. A criterion for the local resolvability of a space and the ω-problem. J. Appl. Anal., 13, No.1, 83-96, 2007.
- [2] J. Ewert, S.P.Ponomarev. On the existence of ω-primitives on arbitrary metric spaces. Math. Slovaca, 53 (1), 51-57, 2003.
- [3] E. Hewitt. A problem of set-theoretic topology. Duke Math. J., 10, 309-333, 1943.
- [4] R.C. Haworth, R.A. McCoy. Baire spaces. Diss. Math., CXLI, Warszawa, PWN, 1977.
- [5] K. Kunen, A. Szymanski, F. Tall. Baire irresolvable spaces and ideal theory. Ann. Math. Sil., 14, 98-107, 1986.
- [6] G. Bezhanishvili, R. Mines, P.J. Morandi. Scattered, Hausdorf-reducible, and hereditarily irresolvable spaces. Topology and Its Applications, 132, 291-306, 2003.
- [7] R.M. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable. Ann. Math., (2), 92, 1-56, 1970.
- [8] M.K. Fort, Jr. Category theorems. Fund. Math., 42, 276-288, 1955.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d057d52e-83dd-445d-867a-7112c33cecd8