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Abstract. We show that if there exists a second κ-category (or κ-Baire) SI-space,

then there exists a second κ-category (resp. κ-Baire) MI-space. Next we discuss

some properties of real functions on such spaces.

1. Preliminaries and basic de�nitions

The topic of our research stems from the ω-problem formulated below (see also

[1]), which initially and formally had nothing in common with the spaces under

discussion. The connections appeares in the way of analyzing the problem for

non-metrizable spaces.

Although we retain all the de�nitions and notation from [1], we recall some

of them for convenience of the reader.

Let X = (X, τ) be a topological space. To each function F : X → R we

associate the upper and lower Baire functions

M(F, ·) : X → R, m(F, ·) : X → R

de�ned in a usual way (see [1]). It is well known that M(F, ·) is upper semi-

continuous (USC), while m(F, ·) is lower semicontinuous (LSC) on X.
The value

ω(F, x) =M(F, x) −m(F, x) ∈ [0,∞]

is called the oscillation of F at a point x.
We can also give an equivalent de�nition:

ω(F, x) = inf
U

sup
x′,x′′∈U

(F (x′)− F (x′′)),

where the in�mum is taken over all elements U of a neighborhood base τx of

τ at x.
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Let X = (X, τ) be a topological space and a USC function f : X → [0,∞]
be given. If there exists a function F : X → R such that

∀x ∈ X : ω(F, x) = f(x),

then we call F an ω-primitive for f.
By the �ω-problem� on a topological space X we mean the problem of the

existence of an ω-primitive for a given USC function f : X → [0,∞].1

In what follows, we consider only dense-in-themselves topological spaces

and �nite USC functions f.
In [2] it was shown that the ω-problem is solvable for each metric space. For

a non-metrizable space the ω-problem need not be solvable what was shown

in the case of an irresolvable space (see, e.g. [1], Theorem 4).

The notion of a resolvable (irresolvable) space was introduced in [3], where

the basic properties of such spaces were given. Further, we will discuss the

following two special classes of irresolvable spaces introduced in [3].

A dense-in-itself topological space X = (X, τ) is called an MI-space (or

simply, MI) if every dense subset of (X, τ) is open.
A dense-in-itself topological space X = (X, τ) is called an SI-space (or

simply, SI) if X has no resolvable subsets. Each MI-space is an SI-space [3].

We often write X instead of (X, τ). Closure of E is denoted by E. The
phrase �E ⊂ X is τ -open (or τ -closed, τ -dense, etc.)� means that E is so with

respect to the topology τ on X. Similarly, by IntτE we denote the interior of

E with respect to the topology τ. The symbol τ is omitted when no confusion

could arise.

2. On second category MI-spaces and Baire
MI-spaces

The notions of a �rst category (second category) set and of a Baire space

will be considered in some generalized sense. Namely, we adopt the following

de�nitions (see [4], [5]). Let κ be a cardinal, κ > ℵ0.

De�nition 1. A set E ⊂ X = (X, τ) is of the �rst κ-category if it can be

written in the form

E =
⋃
α∈A

Eα,

where cardA < κ and each Eα is nowhere dense in X.
A set E ⊂ X = (X, τ) is of the second κ-category if it is not of the �rst

κ-category.
1Problems of this type in various settings and di�erent terminology have been studied

by many authors. Some results can be found in References which, however, are far from

being complete.
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De�nition 2. A topological space X = (X, τ) is called κ-Baire if the inter-

section of fewer than κ dense open subsets of X is dense in X.

Recall that the de�nitions of a �usual� �rst (second) category set and of

a Baire space correspond to κ = ℵ1 and that each second κ-category set

(κ-Baire space) is at the same time a �usual� second category set (resp. Baire

space).

De�nition 3. ([5]). A space X = (X, τ) is called κ-SIB if it is a κ-Baire
SI-space. We also say that X is a κ-SIB-space.

In a similar way, we give

De�nition 4. A space X = (X, τ) is called κ-MIB (or κ-MIB-space) if X is

a κ-Baire MI-space.

Although initiated by the ω-problem, the propositions we are going to prove

in this section were motivated by [5] and [6].

In [5] the authors obtained consistency and existence results concerning

κ-SIB-spaces. Their methods used the theory of ideals on cardinals.

Our goal is far more simple. Namely, we are going only to show that

if there exists a κ-SIB-space (or a second κ-category SI-space), then there

exists a corresponding MI-space, i.e. a κ-MIB-space (or, respectively, a second

κ-category MI-space). Some properties of functions and the ω-problem for

such spaces will be discussed in Section 3.

Let X = (X, τ) be a topological space. Following [6], let D(X, τ) denote
the family of all dense subsets of (X, τ).

By F(X, τ) we denote the family of �lters F on (X, τ) consisting of dense

subsets of (X, τ). It is clear that F(X, τ) is partially ordered by the usual

inclusion relation.

Lemma 1. ([6], Lemma 3.3). Let X = (X, τ) be a topological space. Then

there exists an ultra�lter Fm ∈ F(X, τ).

Given a topological space (X, τ) and a �lter F ∈ F(X, τ), one may produce

a �ner topology τ̂ on X generated by the family τ∪F . By de�nition, the basis
for τ̂ consists of all intersections U ∩E, where ∅ �= U ∈ τ and E ∈ F (see [6]).

It is convenient to state the next two theorems of this section in the form

of the following Proposition from [6]. Only category and baireness will be new

items and this is exactly the object of our consideration.
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Lemma 2. ([6], P roposition 3.4). Let X = (X, τ) be a dense-in-itself T1 (or

Hausdor�) space. Let Fm ∈ F(X, τ) be an ultra�lter. De�ne τ̂ to be the

topology generated by τ ∪Fm. Then

(i) D(X, τ̂ ) = Fm;

(ii) (X, τ̂ ) is an MI�space which is T1 (respectively, Hausdor�);

(iii) if (X, τ) is connected, then so is (X, τ̂ ).

Lemma 3. ([3], Theorem 29). Every dense subset of an SI�space has dense

interior.

Now we will prove the �rst main result of this section.

Theorem 1. Assume that there exists a second κ-category T1 (or Hausdor�)

space (X, τ) which is SI. Let Fm ∈ F(X, τ) be an ultra�lter and let τ̂ be

a topology on X generated by τ ∪Fm. Then

(i) D(X, τ̂ ) = Fm;

(ii) (X, τ̂ ) is a T1 (respectively, Hausdor�) MI-space;

(iii) (X, τ̂ ) is of second κ-category; thus (X, τ̂ ) is a second κ-category
MI-space;

(iv) if (X, τ) is connected, then so is (X, τ̂ ).

Proof. Assertions (i), (ii), (iv) follow straightforward from Lemma 2. We

only need to prove (iii). Assume that (iii) does not hold. Then there exists

a set A, cardA < κ, such that

X =
⋃
α∈A

Eα,

where each Eα is τ̂ -nowhere dense in X (i.e. nowhere dense in (X, τ̂ )).
Therefore X \ Xα is τ̂ -dense, hence τ -dense in X because τ ⊂ τ̂ . Since
(X, τ) is SI, we have by Lemma 3 that Intτ (X \ Eα) is τ -dense in X. It
follows that X \ Intτ (X \ Eα) is τ -closed and τ -nowhere dense in X. Since
Eα ⊂ X \ Intτ (X \ Eα), we conclude that every Eα is τ -nowhere dense in X;
a contradiction because (X, τ) is of the second κ-category. �

Lemma 4. ([3], Theorem 33). If X is an MI�space and E ⊂ X, then

IntE = ∅ if and only if E is closed and discrete (the empty set is considered

as discrete).

Next we will prove our second main result replacing second κ-category
spaces by κ-Baire spaces.
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Theorem 2. Assume that there exists a dense-in-itself T1 (or Hausdor�)

κ-SIB-space (X, τ). Let Fm ∈ F(X, τ) be an ultra�lter and let τ̂ be a topology

on X generated by τ ∪Fm. Then

(i) D(X, τ̂ ) = Fm;

(ii) (X, τ̂ ) is an MI-space which is T1 (respectively, Hausdor�);

(iii) (X, τ̂ ) is a κ-Baire space;

Thus (X, τ̂ ) is a κ-MIB-space which is T1 (respectively, Hausdor�);

(iv) moreover, if (X, τ) is connected, then so is (X, τ̂ ).

Proof. As in Theorem 1, claims (i), (ii), (iv) follow immediately from Lem-

ma 2. It only remains to prove (iii). Assume that (iii) does not hold. Then

there exists a nonempty set G ∈ τ̂ which is of the �rst κ-category in (X, τ̂ ).
Let us prove that in this case the set X \G should be dense in (X, τ̂ ).
Since the family {W ∩E : W ∈ τ \{∅}, E ∈ Fm} is a basis of the topology

τ̂ , it su�ces to show that

∀ E ∈ Fm ∀W ∈ τ \ {∅} : E ∩W ∩ (X \G) �= ∅. (3)

Assume that this does not hold. Then there exist E0 ∈ Fm and W0 ∈ τ \ {∅}
such that E0 ∩W0 ∩ (X \ G) = ∅. It follows that E0 ⊂ (X \W0) ∪ G, and
therefore (X \W0) ∪G ∈ Fm, because Fm is a �lter.

Then we have

∀ E ∈ Fm : E ∩ ((X \W0) ∪G) ∈ Fm,

hence E ∩ ((X \W0) ∪ G) = (E \W0) ∪ (E ∩ G) is dense in (X, τ) for each
E ∈ Fm. Since ∅ �=W0 is τ -open, this yields that E ∩G is τ -dense in W0 for

each E ∈ Fm. In other words,

∀ E ∈ Fm ∀ V ∈ τ \ {∅}, V ⊂W0, : V ∩ (E ∩G) = (V ∩ E) ∩G �= ∅. (4)

Since V ∩E ∈ τ̂ \ {∅}, Eq. (4) implies that a τ̂ -open set G∩W0 is τ̂ -dense
in a τ -open, hence τ̂ -open, set W0. It follows that W0 \G is τ̂ -nowhere dense
in a τ̂ -open set W0.

This implies, recalling that G is, by assumption, �rst κ-category in (X, τ̂ ),
that W0 is also �rst κ-category in (X, τ̂ ) what follows immediately in view of

the equality

W0 = (W0 \G) ∪ (W0 ∩G).

Therefore, there exists a set A, cardA < κ, such that

W0 =
⋃
α∈A

Tα, (5)
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where each Tα is nowhere dense in (X, τ̂ ). Since Intτ̂Tα = ∅ and (X, τ̂ ) is MI,

we have that every Tα is τ̂ -closed and τ̂ -discrete (Lemma 4). As (X, τ̂ ) is

dense-in-itself, each X \Tα is dense in (X, τ̂ ). Since (X, τ) is κ-Baire, a τ -open
set W0 is of the second κ-category in (X, τ), therefore it follows by (5) that

there exist β ∈ A and Ω ⊂W0, Ω ∈ τ \ {∅}, such that Tβ is τ -dense in Ω.
Since the set X \ Tβ is τ̂ -dense in X, it is also τ -dense in X. In particular,

X \ Tβ is τ -dense in Ω.
We have

Ω = (Ω ∩ Tβ) ∪ (Ω ∩ (X \ Tβ)),

where each of the two terms is τ -dense in Ω.
But this means that a τ -open set Ω is resolvable, which is impossible,

because (X, τ) is an SI�space.

Consequently, we have shown that if (3) does not hold, then we get a con-

tradiction. Thus X \ G is τ̂ -dense in X. But this is again a contradiction

because G is nonempty and τ̂ -open.
We �nally conclude that (X, τ̂ ) has no nonempty �rst κ-category open

subsets, i.e. (X, τ̂ ) is κ-Baire, as claimed. �
To complete this section, let us make the following

Remark 1. In [9] it was shown that there is a model of the theory ZF in

which all the subsets of the real line are Lebesgue measurable. Let Rs denote

the real line in that model and τd denote the usual density topology on Rs.
Question: is ZF consistent with the conjunction of the following two

statements:

(a) each subset of R is Lebesgue measurable,

(b) almost each point of any set E ⊂ R is its point of density?

If the answer is in a�rmative, then (Rs, τd) is a Baire space which is MI.

Indeed, the complement of each τd-dense set E ⊂ Rs would be of measure zero,

whence E is τd-open in Rs.

3. Some properties of real functions on Baire SI- and
MI-spaces

Recall that if X is a topological space and ϕ : X → R a USC (or LSC)

function, then the set of points at which ϕ is discontinuous is of the �rst

category (and Fσ) in X (see, e.g. [8], Theorem 1), and if X is a Baire space,

then the complement of that set is dense in X. We also recall that by ω(F, x)
we denote the oscillation of F at x ∈ X (cf. ()). Since ω(F, ·) may take the

value∞(:= +∞), we consider [0,∞] with its standard topology of a one-point

compacti�cation of [0,∞).
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Given a mapping ϕ : X → Y between topological spaces, we denote by

C (ϕ) and D(ϕ) the sets of continuity and discontinuity points of ϕ, respec-
tively.

De�nition 5. ([1]). A topological space X is said to be resolvable at a point

x0 ∈ X if each open neighborhood of x0 contains a nonempty open subset which

is resolvable.

We will use the following proposition which is the main result of [1].

Lemma 5. ([1], Theorem 3). Let X = (X, τ) be a topological space. In

order that X be resolvable at a point x0, it is necessary and su�cient that

the following condition be satis�ed. There exist an open neighborhood G of

x0 and a function F : G → R such that 0 < ω(F, x0) < ∞ and ω(F, ·) is

quasicontinuous at x0.

Theorem 3. Let X = (X, τ) be a Baire SI-space. Then for each function

F : X → R we have

(a) C (F ) = C (ω(F, ·)).
(b) The Fσ-set D(F ) is nowhere dense.

Proof. The set E∞ = {x ∈ X : ω(F, x) = ∞} is obviously closed. First

we will show that E∞ is nowhere dense. Indeed, assume that this is not the

case. Then there exists an open set U such that ω(F, x) =∞ for each x ∈ U.
It follows that En = {x ∈ U : F (x) > n} is dense in U for each n ∈ N. Since
U is an SI-subspace of X, we have by Lemma 3 that IntEn is dense in U . The
subspace U is a Baire subspace, this yields

⋂∞
n=1En �= ∅. But then it follows

that F (x) = ∞ at each x ∈
⋂∞

n=1En, which is clearly impossible. Thus, E∞
is nowhere dense in X.

To prove (a), �rst observe that the inclusion C (F ) ⊂ C (ω(F, ·)) is obvi-

ous. The reverse inclusion may be proved as follows. Let x0 ∈ C (ω(F, ·)).
The case ω(F, x0) = ∞ is impossible what follows immediately from the

fact that E∞ is nowhere dense. So we have ω(F, x0) < ∞. We claim that

ω(F, x0) = 0. Indeed, if not, we would get, by Lemma 5, that X is resolvable

at x0, a contradiction because X is SI. Thus ω(F, x0) = 0, i.e. x0 ∈ C (F ).
This shows that C (ω(F, ·)) ⊂ C (F ) which completes the proof of Claim (a).

Put E0 = X \ E∞. Since ω(F, ·) is USC and �nite on a dense open set E0

(which is a Baire subspace of X), the set E0∩C (ω(F, ·)) = E0∩C (F ) is dense
in E0, hence by Lemma 3, has a dense interior, because E0 is SI. Therefore,

D(F ) = E∞ ∪ (E0 \C (F )) = X \C (F ) is a nowhere dense subset of X which

proves Claim (b). �
Similar proposition holds for MI-spaces. Namely, we have
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Theorem 4. Let X = (X, τ) be a Baire MI-space. Then for each function

F : X → R we have

(a*) C (F ) = C (ω(F, ·)).
(b*) D(F ) is a discrete closed set.

Proof. Since each MI-space is an SI-space, Claim (a*) follows from Claim

(a) of Theorem 3. By Claim (b) of Theorem 3, we have IntD(F ) = ∅, whence
by Lemma 4, Claim (b*) follows. �

As a consequence, we obtain the following simple criteria for the existence

of ω-primitives on Baire SI- and MI-spaces.

Theorem 5. (A) Let X = (X, τ) be a Baire SI-space. Then a USC function

f : X → [0,∞) has an ω-primitive F : X → R if and only if f vanishes on

a dense subset of X.

(B) Let X = (X, τ) be a Baire MI-space. Then a USC function

f : X → [0,∞) has an ω-primitive F : X → R if and only if f vanishes

outside of a closed and discrete subset of X.

In either of the cases (A),(B) one may take F = f.

Proof of (A). Assume that F is an ω-primitive for f. Then applying Claim

(a) of Theorem 3, we get C (F ) = C (ω(F, ·)) = C (f). This implies, in view of

Claim (b) of Theorem 3, that f(x) = ω(F, x) = 0 at each point x of the dense

set X \D(F ).
Conversely, if a USC function f : X → [0,∞) vanishes on a dense set E,

then it is easy to see that ∀x ∈ X : ω(f, x) = f(x).
Proof of (B). Assume that a USC function f : X → [0,∞) has an

ω�primitive F : X → R. By Theorem 4, the set D(F ) of points at which

F is discontinuous is closed and discrete. Therefore, f(x) = ω(F, x) = 0 at

each x ∈ X \D(F ).
Conversely, assume that there is a closed and discrete set E ⊂ X such that

a USC function f : X → [0,∞) vanishes outside E. Since X is dense in itself

and f ≥ 0 is USC, we easily deduce that the equality ω(f, x) = f(x) holds for
each x ∈ X. In other words, f is an ω-primitive for itself. �
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