PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developing a multiscale in silico cornea for understanding the role of cell mechanics in corneal pathologies

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multiscale in silico modeling of the cell-tissue-organ units is an emerging area of research with the potential to improve our understanding of various disease pathogenesis. Using a multiscale modeling approach, we developed a computational model of the human cornea to investigate how the application of macroscale loads may alter the micro-mechanical environment of the cells. We then utilized the multiscale model to study the effect of physiological and non-physiological mechanical loading conditions such as intraocular pressure (IOP) loading, IOP spike, and eye-poking on the corneal cells. On comparing the results obtained under increased IOP and eye-poking loading, we observed large differences in the averaged principal stress magnitudes in the immediate vicinity of the cell through the thickness of the cornea. On the other hand, our model predicted that under physiological IOP loading, the average principal strain magnitudes in the immediate vicinity of the cell remained almost constant irrespective of the cell location in the stroma. To our knowledge, this is the first study that investigates the effect of mechanical loading on the corneal cells through a multiscale modeling framework. Our computational multiscale cornea model provides a platform to perform virtual experiments and test hypotheses to further our understanding of the potential mechanical cause of multiple diseases in the cornea.
Twórcy
autor
  • Department of Engineering, East Carolina University, Greenville, NC, USA
autor
  • Department of Engineering, East Carolina University, Greenville, NC, USA
autor
  • Department of Engineering, East Carolina University, Greenville, NC, USA
Bibliografia
  • [1] Alber M, Buganza Tepole A, Cannon WR, De S, Dura-Bernal S, Garikipati K, et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj Digit Med. Springer Science and Business Media LLC 2019;2:1–11.
  • [2] Weinberg EJ, Kaazempur Mofrad MR. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech 2008;41:3482–7.
  • [3] Fedosov DA, Noguchi H, Gompper G. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech Model Mechanobiol 2014;13:239–58.
  • [4] Wang Y, Guerrero-Juarez CF, Qiu Y, Du H, et al. A multiscale hybrid mathematical model of epidermal-dermal interactions during skin wound healing. Exp Dermatol 2019;28:493–502.
  • [5] Vahdati A, Walscharts S, Jonkers I, Garcia-Aznar JM, Vander Sloten J, van Lenthe GH. Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur. J Mech Behav Biomed Mater 2014;30:244–52.
  • [6] Hambli R. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol 2014;2:6.
  • [7] Rouhi G, Vahdati A, Li X, Sudak L. A three-dimensional computer model to simulate spongy bone remodeling under overload using a semi-mechanistic bone remodeling theory. J Mech Med Biol 2015;15:15.
  • [8] Pinsky PM, van der Heide D, Chernyak D. Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 2005;31:136–45.
  • [9] Pandolfi A, Holzapfel GA. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J Biomech Eng 2008;130.
  • [10] Vahdati A, Seven I, Mysore N, Randleman JB, Dupps WJ. Computational biomechanical analysis of asymmetric ectasia risk in unilateral Post-LASIK ectasia HHS public access. J Refract Surg 2016;32:811–20.
  • [11] Seven I, Vahdati A, De Stefano VS, Krueger RR, Dupps WJ. Comparison of patient-specific computational modeling predictions and clinical outcomes of lasik for myopia. Investig Ophthalmol Vis Sci 2016;57:6287–97.
  • [12] Grytz R, Meschke G. A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol 2010;9:225–35.
  • [13] Whitford C, Studer H, Boote C, Meek KM, Elsheikh A. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density. J Mech Behav Biomed Mater 2015;42:76–87.
  • [14] Pinsky PM, Cheng X. A constitutive model for swelling pressure and volumetric behavior of highly-hydrated connective tissue. J Elast 2017;129:145–70.
  • [15] Kling S, Marcos S. Finite-element modeling of intrastromal ring segment implantation into a hyperelastic cornea. Investig Ophthalmol Vis Sci 2013;54:881–9.
  • [16] Pandolfi A, Fotia G, Manganiello F. Finite element simulations of laser refractive corneal surgery. Eng Comput 2009;25:15–24.
  • [17] West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol 2006;38:1625.
  • [18] Komai Y, visual TU-I ophthalmology &, 1991 undefined. The three-dimensional organization of collagen fibrils in the human cornea and sclera. iovs.arvojournals.org.
  • [19] Kim W-J, Rabinowitz YS, Meisler DM, et al. Keratocyte apoptosis associated with keratoconus. Exp Eye Res 1999;69:475–81.
  • [20] Ku JYF, Niederer RL, Patel DV, Sherwin T, McGhee CNJ. Laser scanning in vivo confocal analysis of keratocyte density in Keratoconus. Ophthalmology 2008;115:845–50.
  • [21] Dupps WJ, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res 2006;709–20.
  • [22] Wilson SE, He Y-G, Weng J, et al. Epithelial Injury Induces Keratocyte Apoptosis: Hypothesized Role for the Interleukin-1 System in the Modulation of Corneal Tissue Organization and Wound Healing. Exp Eye Res 1996;62:325–38.
  • [23] Kalteniece A, Ferdousi M, Azmi S, Marshall A, Soran H, Malik RA. Keratocyte density is reduced and related to corneal nerve damage in diabetic neuropathy. Investig Opthalmology Vis Sci 2018;59:3584.
  • [24] Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. J Cataract Refract Surg 2003;29:1780–5.
  • [25] Seven I, Lloyd JS, Dupps WJ. Differences in Simulated Refractive Outcomes of Photorefractive Keratectomy (PRK) and Laser In-Situ Keratomileusis (LASIK) for Myopia in Same-Eye Virtual Trials. Int J Environ Res Public Health 2019;17:287.
  • [26] Pogoda K, Jaczewska J, Wiltowska-Zuber J, Klymenko O, Zuber K, Fornal M, et al. Depth-sensing analysis of cytoskeleton organization based on AFM data. Eur Biophys J 2012;41:79–87.
  • [27] Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg Slack Incorporated 2008.
  • [28] Prydal JI, Franc F, Dilly PN, Muir MGK, Corbett MC, Marshall J. Keratocyte density and size in conscious humans by digital image analysis of confocal images. Eye 1998;12:337–42.
  • [29] David R, Zangwill L, Briscoe D, Dagan M, Yagev R, Yassur Y. Diurnal intraocular pressure variations: an analysis of 690 diurnal curves. Br J Ophthalmol 1992;76:280–3.
  • [30] Boccafoschi F, Mosca C, Ramella M, Valente G, Cannas M. The effect of mechanical strain on soft (cardiovascular) and hard (bone) tissues. Cell Adh Migr 2013;7:165–73.
  • [31] Wang JHC, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene. Elsevier; 2007;1–15.
  • [32] Chan DD, Van Dyke WS, Bahls M, Connell SD, Critser P, Kelleher JE, et al. Mechanostasis in apoptosis and medicine. Prog Biophys Mol Biol 2011;517–24.
  • [33] Petroll WM, Vishwanath M, Ma L. Corneal fibroblasts respond rapidly to changes in local mechanical stress. Investig Opthalmology Vis Sci 2004;45:3466.
  • [34] Scroggs MW, Proia AD. Histopathological variation in Keratoconus. Cornea 1992;11:553–9.
  • [35] Gatzioufas Z, Labiris G, Stachs O, Hovakimyan M, Schnaidt A, Viestenz A, et al. Biomechanical profile of the cornea in primary congenital glaucoma. Acta Ophthalmol (Copenh) 2013;91:e29–34.
  • [36] Correlation Between Keratocytes Density and Intraocular Pressure | IOVS | ARVO Journals [Internet]. [cited 2020 Feb 11]. Available from: https://iovs.arvojournals.org/ article.aspx?articleid=2404271.
  • [37] Carvalho LA, Prado M, Cunha RH, Costa Neto A, Paranhos Jr A, Schor P, et al. Keratoconus prediction using a finite element model of the cornea with local biomechanical properties. Arq Bras Oftalmol 2009;72:139–45.
  • [38] McMonnies CW. Mechanisms of rubbing-related corneal trauma in Keratoconus. Cornea 2009;28:607–15.
  • [39] Seven I, Vahdati A, Pedersen IB, Vestergaard A, Hjortdal J, Roberts CJ, et al. Contralateral eye comparison of SMILE and flap-based corneal refractive surgery: computational analysis of biomechanical impact. J Refract Surg 2017;33:444–53.
  • [40] Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res 2007;32:11–9.
  • [41] Brouwer I, Ustin J, Bentley L, Sherman A, Dhruv N, Tendick F. Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation. Stud Health Technol Inform 2001;81:69–74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d057cfdf-59f6-4bc2-8ee3-d40fc67c6071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.