PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of the tensile damage of degraded carbon steel and ferritic alloy-steel by acoustic emission with in situ microscopic investigations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results obtained from the destructive laboratory investigation conducted on materials from pressure vessels after long-term operation in the refinery industry. Tested materials contained structural defects, which arose from improper heat treatment during steel plate manufacturing. Detailed metallographic and chemical composition tests and static tensile tests were conducted. Next, complex tensile tests were conducted with simultaneous acoustic emission (AE) monitoring while observing microstructural changes by light microscopy. From the laboratory tests, the correlations between the AE signal parameters and material microstructural damage during the tensile tests were developed. The results will be used as a basis of new algorithms for the structural condition assessment of in-service pressure equipment.
Rocznik
Strony
274--285
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Production Engineering Institute, Al. Jana Pawła II 37, 31-864 Krakow, Poland
  • Cracow University of Technology, Faculty of Mechanical Engineering, Production Engineering Institute, Al. Jana Pawła II 37, 31-864 Krakow, Poland
  • Cracow University of Technology, Faculty of Mechanical Engineering, Production Engineering Institute, Al. Jana Pawła II 37, 31-864 Krakow, Poland
Bibliografia
  • [1] W. Sokólski, Corrosion processes direct assessment as a part of operational pipeline safety's, in: VIII National Conference Corrosion Measurements in Electrochemical Protection, 16–18 July, Jurata, Poland, 2004.
  • [2] C.U. Grosse, M. Ohtsu, Acoustic Emission Testing, Basics for Research – Applications in Civil Engineering, Springer, 2008 414 p.
  • [3] H.L. Dunegan, D.O. Harris, C.A. Tatro, Fracture analysis by use of acoustic emission, Eng. Fract. Mech. 1 (1968) 105–122.
  • [4] K. Ono, Acoustic emission in materials research – a review, J. Acoustic Emission 29 (2011) 284–308.
  • [5] A. Lazarev, A. Vinogradov, About plastic instabilities in iron and power spectrum of acoustic emission, J. Acoustic Emission 27 (2009) 144–156.
  • [6] D.M. Almeida, N.S. Maia, A.Q. Bracarense, E.B. Medeiros, T.M. Maciel, M.A. Santos, Characterization of steel pipeline damage using acoustic emission technique, Soldagem Insp. 12 (1) (2007) 55–62.
  • [7] M. Nowak, I. Lyasota, D. Kisała, Testing the node of railway steel bridge using an acoustic emission method, 428 p, in: Advances in Acoustic Emission Technology. Proceedings of the World Conference on Acoustic Emission-2015, Springer, 2017.
  • [8] H.W. Wang, H.M. Yu, H.Q. Xiao, Z.Y. Han, H.Y. Luo, Steel damage based on acoustic emission, Mater. Res. Innovat. 19 (2015) 288–291.
  • [9] M. Marsudi, Study of acoustic emission during tensile test of mild steel plate, in: 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 11–13 July, Mauritius, 2011.
  • [10] S. Zou, F. Yan, G. Yang, W. Sun, The identification of the deformation stage of a metal specimen based on acoustic emission data analysis, Sensors 17 (2017) 1–13.
  • [11] M. Akbari, M. Ahmadi, The application of acoustic emission technique to plastic deformation of low carbon steel, Phys. Proc. 3 (2010) 795–801.
  • [12] D. Yang, L. Yang, F. Dong-ming, Monitoring damage evolution of steel strand using acoustic emission technique and rate process theory, J. Cent. South Univ. 21 (2014) 3692–3697.
  • [13] E. Merson, A. Vinogradov, D.L. Merson, Application of acoustic emission method for investigation of hydrogen embrittlement mechanism in the low-carbon steel, J. Alloys Compd. 645 (2015) 460–463.
  • [14] Z. Penglin, S. Yuan, Z. Zhiqiang, X. Yaxing, Application of acoustic emission technique in Q345E steel tensile damage detection, J. Gansu Sci. 2 (2015) 83–87.
  • [15] D.L. Merson, E.V. Chernyaeva, Use of the method of acoustic emission for determining the mechanical properties of pipe steels, Metal Sci. Heat Treat. 49 (2007) 272–276.
  • [16] C.S. Lee, J.H. Huh, D.M. Li, D.H. Shin, Acoustic emission behavior during tensile tests of low carbon steel welds, ISIJ Int. 39 (1999) 365–370.
  • [17] Y. Zhang, Z. Wen, B. Li, H. Wu, Experimental research on acoustic emission characteristics in damage process of different meso-structural specimens, in: Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, October 30 to November 2015, Jinan, China, 2015.
  • [18] S. Sahoo, B.B. Jha, T.K. Sahoo, Acoustic emission study of deformation behaviour of sensitised 304 stainless steel, Energy Mater. 9 (2014) 1336–1342.
  • [19] C.K. Mukhopadhyay, C. Phaniraj, T. Jayakumar, K.G. Samuel, Study of tensile behaviour of thermally aged alloy D9 wrapper tubes of fast breeder reactor using acoustic emission, Strength Fract. Complex. 8 (2014) 219–229.
  • [20] C.K. Mukhopadhyay, T. Jayakumar, B. Raj, K.K. Ray, Acoustic emission during tensile deformation of pre-strained nuclear grade AISI type 304 stainless steel in the unnotched and notched conditions, J. Mater. Sci. 42 (2007) 5647–5656.
  • [21] K. Máthis, D. Prchal, R. Novotny, P. Hähner, Acoustic emission monitoring of slow strain rate tensile tests of 304L stainless steel in supercritical water environment, Corrosion Sci. 53 (2011) 59–63.
  • [22] J.K. Lee, J.H. Lee, S.P. Lee, I.S. Son, D.S. Bae, Acoustic emission and ultrasonic wave characteristics in TIG-welded 316 stainless steel, Met. Mater. Int. 20 (2014) 483–488.
  • [23] B. Venkataraman, C.K. Mukhopadhyay, B. Raj, Effect of variation of strain rate on thermal and acoustic emission during tensile deformation of nuclear grade AISI type 316 stainless steel, Mater. Sci. Technol. 20 (2004) 1310–1316.
  • [24] A.G. Penkin, V.F. Terent'ev, V.V. Roshchupkin, A.K. Slizov, V. P. Sirotinkin, Acoustic emission analysis of the stages of deformation of TRIP steel, Russ. Metall. 4 (2017) 306–311.
  • [25] Y. Shi, L. Dong, H. Wang, G. Li, S. Liu, Acoustic emission characteristic of 42CrMo material in the process of tension, in: Technology & Application Forum (FENDT) 22–24 June, Nanchang, China, 2016.
  • [26] Y. Li, G. Xiao, L. Chen, Y. Lu, Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel, Int. J. Miner. Metall. Mater. 21 (2014) 1196–1203.
  • [27] H. Shil, T. Dong, Z. Liu, H. Fangl, H. Mal, H. Fanl, Damage activity recognition and behaviour of 40CrNiMoA steel under stretching using acoustic emission technique, in: Prognostics & System Health Management Conference (PHM) 21–23 October, 2015, Coronado, CA, USA, 2015.
  • [28] V.G. Khanzhin, M.A. Shtremel, Quantitative information on damage processes obtained in acoustic-emission measurements, Metal Sci. Heat Treat. 51 (2009) 250–255.
  • [29] J. Gawlik, J. Schmidt, T. Nowak, Z. Wójcicki, A. Zagórski, Nitrogen as an alloying element improving material properties of the high carbon cast steel for ball mill liner plates, Arch. Civil Mech. Eng. 17 (2017) 926–934.
  • [30] B. Behrens, A. Bouguecha, C. Buse, K. Wölki, A. Santangelo, Potentials of in situ monitoring of aluminum alloy forging by acoustic emission, Arch. Civil Mech. Eng. 16 (2016) 724–733.
  • [31] B. Wisner, M. Cabal, P.A. Vanniamparambil, J. Hochhalter, W. P. Leser, A. Kontsos, In situ microscopic investigation to validate acoustic emission monitoring, Exp. Mech. 55 (2015) 1705–1715.
  • [32] E. Maire, V. Carmona, J. Courbon, W. Ludwig, Fast X-ray tomography and acoustic emission study of damage In metals during continuous tensile tests, Acta Mater. 55 (2007) 6806–6815.
  • [33] C. Mo, B. Wisner, M. Cabal, Acoustic emission of deformation twinning in magnesium, Materials 9 (662) (2016) 1–16.
  • [34] GOST 380-60 Common quality carbon steel. Grades.
  • [35] PN-EN, 10025-2: Wyroby walcowane na gorąco ze stali konstrukcyjnych–Część 2: Warunki techniczne dostawy stali konstrukcyjnych niestopowych, 2007.
  • [36] ASTM A335 Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service.
  • [37] PN-EN 13554:2011 Badania nieniszczące – Emisja akustyczna–Zasady ogólne.
  • [38] K. Ohno, M. Ohtsu, Crack classification in concrete based on acoustic emission, Construct. Build. Mater. 24 (2010) 2339–2346.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0544ee6-b494-4722-80e4-5319baa8b189
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.