Identyfikatory
Warianty tytułu
Charakterystyka cieczy magnetoreologicznych wytworzonych na bazie wybranych proszków żelaza karbonylkowego
Języki publikacji
Abstrakty
Carbonyl iron powders (CIP) are characterized by high purity, uniformity of particle shape and size, high saturation magnetization, and resistance to oxidation. These properties, as well as good stability and availability, make them particularly useful for producing fluids with controllable rheological properties. Among such substances are magnetorheological (MR) fluids, which are heterogeneous mixtures of particles of material with ferromagnetic properties in a non-magnetic carrier fluid. Interaction of MR fluids with a magnetic field enables an almost instantaneous and fully reversible change in the consistency of this type of fluid, ranging from a thin fluid state to complete solidification into a structure with a shear strength of several hundred kPa. The paper presents the results of studies of MR fluids produced on the basis of carbonyl iron powders offered by BASF. The authors determine the influence of the physical properties of selected types of CIP powders, i.e. particle size and their magnetic properties, on the magnetorheological effect and conduct a comparative analysis of the characteristics of the developed MR fluids and to evaluate their suitability for technical applications.
Proszki żelaza karbonylkowego (CIP, ang. Carbonyl Iron Powder) cechują się wysoką czystością, jednolitością kształtu i rozmiaru cząstek, wysoką magnetyzacją nasycenia oraz odpornością na utlenianie. Dzięki tym właściwościom, a także dobrej stabilności i dostępności, są szczególnie przydatne do wytwarzania cieczy o sterowanych właściwościach reologicznych. Jednym z rodzajów tego typu substancji są ciecze magnetoreologiczne (MR) stanowiące niejednorodną mieszaninę cząstek z materiału o właściwościach ferromagnetycznych w niemagnetycznej cieczy nośnej. Oddziaływanie polem magnetycznym na ciecze MR pozwala na uzyskanie niemal natychmiastowej i w pełni odwracalnej zmiany konsystencji tego typu cieczy, w zakresie od stanu rzadkopłynnego do całkowitego zestalenia w strukturę o wytrzymałości na ścinanie rzędu kilkuset kPa. W pracy przedstawiono wyniki badań cieczy MR wytworzonych na bazie proszków żelaza karbonylkowego oferowanych przez koncern BASF. Określono wpływ właściwości fizycznych wybranych rodzajów proszków CIP tj. wielkości cząstek i ich właściwości magnetycznych na efekt magnetoreologiczny. Celem pracy było wykonanie analizy porównawczej charakterystyk opracowanych cieczy MR oraz przeprowadzenie oceny ich przydatności do zastosowań technicznych.
Czasopismo
Rocznik
Tom
Strony
93--101
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Krakow, Poland
Bibliografia
- 1. Sapiński B., Jastrzębcki Ł.: Performance Improvement of an MR-Damper-Based Vibration-Reduction System with Energy Harvesting at Sprung Mass Changes. Energies 17(14), 2024, hp. 3436, ttps://doi. org/10.3390/en17143436.
- 2. Jeniš F., Michálek T., Kubík M., Hába A., Strecker Z., Žáček J., Mazůrek I.: Semi-active yaw dampers in locomotive running gear: New control algorithms and verification of their stabilising effect. Journal of Vibration and Control, 2024, p. 10775463241255765, https://doi.org/10.1177/10775463241255765.
- 3. Hu G., Ying S., Qi H., Yu L., Li G.: Design, analysis and optimization of a hybrid fluid flow magnetorheological damper based on multiphysics coupling model. Mechanical Systems and Signal Processing 205, 2023, p. 110877, https://doi.org/10.1016/j.ymssp.2023.110877.
- 4. Yan J., Dong L.: Design and modeling of a magnetorheological damper with double annular damping gap. Journal of Intelligent Material Systems and Structures 34(8), 2023, pp. 976–989, https://doi. org/10.1177/1045389X221117495.
- 5. Yang G., Fang S., Dong T., Luo Y., Wang D.: Antilock braking performance evaluation of an automotive magnetorheological braking system. Smart Materials and Structures 32(10), 2023, p. 105004, https:// doi.org/10.1088/1361-665X/acf0a8.
- 6. Wang D., Yang G., Luo Y., Fang S., Dong T.: Optimal design and stability control of an automotive magnetorheological brake considering the temperature effect. Smart Materials and Structures 32(2), 2023, p. 025020, https://doi.org/10.1088/1361-665X/acb1e2.
- 7. Dassisti M., Brunetti G.: Introduction to Magnetorheological Fluids, Encyclopedia of Smart Materials, Elsevier, 2022, pp. 187–202, https://doi.org/10.1016/B978-0-12-803581-8.11744-8.
- 8. Jang I.B., Kim H. B., Lee J. Y., You J.L., Choi H. J., Jhon M.S.: Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. Journal of Applied Physics 97(10), 2005, p. 10Q912, https://doi.org/10.1063/1.1853835.
- 9. Ronzova A., Sedlacik M., Cvek M.: Magnetorheological fluids based on core–shell carbonyl iron particles modified by various organosilanes: synthesis, stability and performance. Soft Matter 17(5), 2021, pp. 1299–1306, https://doi.org/10.1039/D0SM01785J.
- 10. Zhang W.L., Kim S.D., Choi H.J.: Effect of Graphene Oxide on Carbonyl-Iron-Based Magnetorheological Fluid. IEEE Transactions on Magnetism 50(1), 2014, pp. 1–4, https://doi. org/10.1109/TMAG.2013.2275736.
- 11. Tong Y., Dong X., Qi M.: High performance magnetorheological fluids with flower-like cobalt particles, Smart Materials and Structures 26(2), 2017, p. 025023, https://doi.org/10.1088/1361-665X/aa57cc.
- 12. Choi J., Han S., Nam K. T., Seo Y.: Hierarchically Structured Fe3 O4 Nanoparticles for High-Performance Magnetorheological Fluids with Long-Term Stability. ACS Applied Nano Materials 3(11), 2020, pp. 10931–10940, https://doi.org/10.1021/acsanm.0c02187.
- 13. Han S., Choi J., Kim J., Han H.N., Choi H.J., Seo Y.: Porous Fe3 O4 submicron particles for use in magnetorheological fluids, Colloids and Surfaces A: Physicochemical and Engineering Aspects 613, 2021, p. 126066, https://doi.org/10.1016/j.colsurfa.2020.126066.
- 14. Kamble V.G., Panda H.S., Kolekar S., Jagadeesha T.: Synthesis of Magneto Rheological Fluids Using Nickel Particles and Study on Their Rheological Behaviour. Tribology in Materials and Applications, Springer International Publishing, 2020, pp. 109–122, https://doi.org/10.1007/978-3-030-47451-5_6.
- 15. Xia Z., Wu X., Peng G., Wang L., Li W., Wen W.: A novel nickel nanowire based magnetorheological material, Smart Materials and Structures 26(5), 2017, p. 054006, https://doi.org/10.1088/1361-665X/ aa5bd0.
- 16. Kumar J.S., Paul P.S., Raghunathan G., Alex D.G.: A review of challenges and solutions in the preparation and use of magnetorheological fluids. International Journal of Mechanical and Materials Engineering 14(13), 2019, https://doi.org/10.1186/s40712-019-0109-2.
- 17. Anupama A.V., Kumaran V., Sahoo B.: Effect of magnetic dipolar interactions and size dispersity on the origin of steady state magnetomechanical response in bidisperse Mn–Zn ferrite spherical particle based magnetorheological fluids. New Journal of Chemistry 43(25), 2019, pp. 9969–9979, https://doi. org/10.1039/C9NJ00947G.
- 18. Kannappan K.T., Laherisheth Z., Parekh K., Upadhyay R.V.: The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids, AIP Conference Proceedings, 2015, p. 130020, https://doi.org/10.1063/1.4918168.
- 19. Anupama A.V., Kumaran V., Sahoo B.: Magnetorheological fluids containing rod-shaped lithium–zinc ferrite particles: the steady-state shear response. Soft Matter 14(26), 2018, pp. 5407–5419, https://doi. org/10.1039/C8SM00807H.
- 20. Kwon S.H., Jung H.S., Choi H. J., Strecker Z., Roupec J.: Effect of octahedral typed iron oxide particles on magnetorheological behavior of carbonyl iron dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 555, 2018, pp. 685–690, https://doi.org/10.1016/j.colsurfa.2018.07.060.
- 21. Thakur M.K., Sarkar C.: Influence of Graphite Flakes on the Strength of Magnetorheological Fluids at High Temperature and its Rheology. IEEE Transactions on Magnetism 56(5), 2020, pp. 1–10, https:// doi.org/10.1109/TMAG.2020.2978159.
- 22. Chin B.D., Park J.H., Kwon M.H., Park O.O.: Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheologica Acta 40(3), 2001, pp. 211–219, https://doi. org/10.1007/s003970000150.
- 23. López-López M.T., Kuzhir P., Bossis G.: Magnetorheology of fiber suspensions. I. Experimental, Journal of Rheology 53(1), 2009, pp. 115–126, https://doi.org/10.1122/1.3005402.
- 24. Gorodkin S.R., James R.O., Kordonski W.I.: Magnetic properties of carbonyl iron particles in magnetorheological fluids. Journal of Physics: Conferenece Series 149, 2009, p. 012051, https://doi. org/10.1088/1742-6596/149/1/012051.
- 25. Kumar M., Kumar A., Bharti R.K., Yadav H.N.S., Das M.: A review on rheological properties of magnetorheological fluid for engineering components polishing. Materials Today: Proceedings 56, 2022, pp. A6–A12, https://doi.org/10.1016/j.matpr.2021.11.611.
- 26. Sapiński B., Horak W.: Rheological properties of MR fluids recommended for use in shock absorbers, Acta Mechanica et Automatica 7(2), 2013, pp. 107–110, https://doi.org/10.2478/ama-2013-0019.
- 27. Lemaire E., Meunier A., Bossis G., Liu J., Felt D., Bashtovoi P., Matoussevitch N.: Influence of the particle size on the rheology of magnetorheological fluids. Journal of Rheology 39(5), 1995, pp. 1011– –1020, https://doi.org/10.1122/1.550614.
- 28. Maurya C.S., Sarkar C.: Dynamic and creep and recovery performance of Fe3 O4 nanoparticle and carbonyl iron microparticle water-based magnetorheological fluid. Journal of Intelligent Material Systems and Structures 33(6), 2022, pp. 743–755, https://doi.org/10.1177/1045389X211026379.
- 29. Cheng J., Liu K., Zhang Z., Wei Z., Ma Y., Lu S.: Effect of Compound Surfactants Modified Carbonyl Iron on Magnetorheological Fluids. Journal of Superconductivity and Novel Magnetism 34(4), 2021, pp. 1177–1183, https://doi.org/10.1007/s10948-021-05813-1.
- 30. Swaroop K.V., Aruna M.N., Kumar H., Rahman M.R.: Investigation of steady state rheological properties and sedimentation of coated and pure carbonyl iron particles based magneto-rheological fluids. Materials Today: Proceedings 39, 2021, pp. 1450–1455, https://doi.org/10.1016/j.matpr.2020.05.364.
- 31. Bloemacher D.: Carbonyl iron powders: Its production and new developments. Metal Powder Report 45(2), 1990, pp. 117–119, https://doi.org/10.1016/S0026-0657(10)80122-5.
- 32. BASF SE. Carbonyl Iron Powder for Metal Injection Molding 2024 Internet, cited: 7.10.2024, https:// electronics-electric.basf.com/dam/jcr:7205eaba-f663-3d9c-a4b5-027f3a41a39f/basf/electronicselectric/global/G-EDM-Electronic-Materials/metal-systems/carbonyl-iron-powder/2024-02-21%20 CIP-Brochure_MIM.pdf.
- 33. BASF SE. Carbonyl Iron Powder for Inductive Electronic Component 2024 Internet, cited: 7.10.2024, https://electronics-electric.basf.com/dam/jcr:05603bc3-a727-35dc-abc2-ad79d1d5bad6/basf/electronicselectric/global/G-EDM-Electronic-Materials/metal-systems/carbonyl-iron-powder/2024-02-21%20CIPBrochure_Inductor.pdf.
- 34. BASF SE. Carbonyl Iron Powder for Diamond Tools 2024 Internet, cited: 7.10.2024, https://electronicselectric.basf.com/dam/jcr:84943579-9720-32b7-a94b-860a29c86d07/basf/electronics-electric/global/ G-EDM-Electronic-Materials/metal-systems/carbonyl-iron-powder/2024-02-21%20CIP-Brochure_ DiamondTools.pdf.
- 35. Lim S., Cho M.S., Jang I.B., Choi H.J.: Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica, Journal of Magnetism and Magnetic Materials 282, 2004, pp. 170–173, https://doi.org/10.1016/j.jmmm.2004.04.040.
- 36. Aruna M.N., Rahman M.R., Joladarashi S., Kumar H., Devadas Bhat P.: Influence of different fumed silica as thixotropic additive on carbonyl particles magnetorheological fluids for sedimentation effects, Journal of Magnetism and Magnetic Materials 529, 2021, p. 167910, https://doi.org/10.1016/j. jmmm.2021.167910.
- 37. Yu L., Chen F., Li H.: Study on sedimentation stability of silicone oil-based magnetorheological fluids with fumed silica as additive, Front. Mater. 11, 2024, p. 1395507, https://doi.org/10.3389/ fmats.2024.1395507.
- 38. Jolly M.R., Carlson J.D., Muñoz B.C.: A model of the behaviour of magnetorheological materials, Smart Materials and Structures 5(5), 1996, pp. 607–614, https://doi.org/10.1088/0964-1726/5/5/009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d04fa08c-44d6-44d5-b9f1-b42fbe977bd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.