
59

Applied Computer Science, vol. 12, no. 4, pp. 59–77

Submitted: 2016-11-20
Revised: 2016-12-05

Accepted: 2016-12-09

Swarm intelligence, Bio-inspired, Bat Algorithm,

Multi-swarm optimisation, Non linear optimisation

Evans BAIDOO*, Stephen OPOKU OPPONG**

A COMPARATIVE STUDY ON MULTI-SWARM

OPTIMISATION AND BAT ALGORITHM

FOR UNCONSTRAINED NON LINEAR

OPTIMISATION PROBLEMS

Abstract

A study branch that mocks-up a population of network of swarms or agents

with the ability to self-organise is Swarm intelligence. In spite of the huge

amount of work that has been done in this area in both theoretically and

empirically and the greater success that has been attained in several

aspects, it is still ongoing and at its infant stage. An immune system, a cloud

of bats, or a flock of birds are distinctive examples of a swarm system.

In this study, two types of meta-heuristics algorithms based on population

and swarm intelligence - Multi Swarm Optimization (MSO) and Bat

algorithms (BA) – are set up to find optimal solutions of continuous non-

linear optimisation models. In order to analyze and compare perfect

solutions at the expense of performance of both algorithms, a chain

of computational experiments on six generally used test functions for

assessing the accuracy and the performance of algorithms, in swarm

intelligence fields are used. Computational experiments show that MSO

algorithm seems much superior to BA.

* Department of Computer Science, Kwame Nkrumah University of Science and Technology,

Ghana, e-mail: ebaidoo2.cos@st.knust.edu.gh
** Department of Information Technology, Academic City College, Ghana,

e-mail: geniusstevo@gmail.com

60

1. INTRODUCTION

Optimization problems are ever-present in our daily life and often come

in an array of forms. Ideally, Optimization is the activity of searching for the most

favourable solution among a set of solutions to the problem based on some

performance criteria. Optimisation problems are traditional and most widely

studied problem in Combinatorial Optimization (Yang, 2008). Objective

optimization (objective programming) is an area in computing that is concerned

with mathematical optimization problems with defined decision making criteria,

that involves some objective function to be optimized. In lots of technical fields,

non linear objective optimization dealings in uninterrupted domains involve

a costly numerical simulation with a varied objective function. Much of these

problems can be found in broad applications as finance and logistics,

manufacturing and in engineering. Practically, a crude solution to a continuous

unconstrained optimisation problem will be meant to carry out a predefined task

in some proficient way or the maximum quality or to generate maximum yields

making reference to a given limited resource (Yuan, 2016).

Although not much research study has gone into single and multi-objective non

linear optimization problems, most researchers have varied viewpoints

and as a result, there exist diverse solutions and goals when defining and solving

them. Though the paramount solutions can possibly be worked out by hand

or through comprehensive search in some plain situations, programmed optimi-

zation techniques are needed to respond to most non-trivial problems largely due

to their sizes and complex modality of the search space.

Unconstrained non linear optimization is a dynamic and fast rising research

area with a greater impact in the real world. Regardless of the existence of a broad

variety of such problems that may look relatively different from another, there are

complete or approximate algorithms available to tackle like problems in complex

situations. The process of fine-tuning optimisation can be likened to finding

the highest peak of a landscape with little attention to the actual meaning of the

problem as in fig 1.

Fig. 1. Visualisation of optimisation problem (Yuan, 2016)

61

This paper makes use of two approximate algorithms, Multi Swarm

Optimisation (MSO) and Bat algorithm (BA) for presenting a solution to the

problem. Some authors claim these methods are generally termed meta-heuristic

algorithms (Yang, 2008; Blum et al., 2008) although they are based on the

intelligence of swarm. These methods dwell on the assurance of obtaining optimal

solutions in practically limited time frame. Additionally, no gradient information

is needed. This comes in handy in the situation of optimization problems which

allows for the objective function to be given completely (that said, when objective

function results are attained by simulation), or when there is non-differentiable

objective function.

The paper aims to draw comparison between the Multi Swarm algorithm

and Bat algorithm for solving continues unconstrained non linear single objective

optimisation problems. The remains of the paper are arranged as follows. Section

2 in brief examines the non linear optimization mathematical models for experi-

menttation; Section 3 details brief explanation of the MSO and BA for testing

and solving the problem. Experimental results are revealed in Section 4 and finally

in Section 5 the conclusion of the work.

2. NON LINEAR OPTIMISATION PROBLEM

A Non-linear optimization problem is one in which in any case one of the con-

straints of the decision variable is a flat nonlinear function. Identified and resear-

ched in connection to sensitivity analysis, its original mention can be established

from a thesis in 1952. In general optimisation problem may be defined mathema-

tically by (Gal & Nedoma, 1972) as

𝑃 ∗ (𝜃) = 𝑚𝑖𝑛𝑥∈ℝ𝑛𝑓(𝑥, 𝑜) (1)

g(x, 𝜃) ≤ 0,

𝜃 ∈ Θ ⊂ ℝ𝑚

where: 𝑥 is the optimisation variable, 𝜃 are the parameters, 𝑓(𝑥, 𝑜)is the objective

function, and 𝑔(𝑥, 𝜃)represent the constraints with Θthe parameter space.

A typical example of a Non-linear function description may take a form as:

2𝑥1
2+ 𝑥2

3+ log 𝑥3 (2)

where: 𝑥1, 𝑥2 and 𝑥3 are decision variables.

62

Practically, the mathematical modelling of this problem may include variables that

exponent to a number or a power, and/or multiplied or divided by some other

variables. In most cases they make use of transcendental functions as exp, log,

sine and cosine. A function is said to be multimodal if it has beyond one local

optima. A variable function is separable if it can be modelled as one variable

of a sum of functions. In this case the separability is directly correlated to the

concept of epistasis or interrelation along with the variables of the function.

Friedman (1994) presented a study on dimensionality problems and its features.

Saibal et al (2012) undertake a study on Noisy Non-Linear Optimization Problems

and made a comparative analysis of Firefly Algorithm and Particle Swarm

Optimization. In the end, they concluded the superior-ability of firefly over

particle swarm in solving noisy non linear optimisation problems.

In order to explore the difficulty of same problems behaviour of non linear

optimisation problem, the next section of the paper considers six classical

unconstrained Non-Linear optimization models taken from (“Example Functions

(single and multi-objective functions)”, 2016; “Virtual Library of Simulation

Experiments: Test Functions and Datasets”, 2016) with its function definition

and a 2D graphical representation.

2.1. Griewank Function

Griewank function has a lot of widespread local minima. Nevertheless, the

position of the minima is frequently distributed. It has its global minimum value

at 0 with the function initialization range from [−600,600]. Griewank function

contain some product term that initiates interdependence with the variables.

𝑓1(𝑥) = ∑
𝑥𝑖

2

4000
𝑛
𝑖=1 − ∏ 𝑐𝑜𝑠𝑛

𝑖−1 (
𝑥𝑖

√𝑖
) + 1 (3)

Fig. 2. 2D Plot for Griewangk's function (“Virtual Library of Simulation Experiments:

Test Functions and Datasets”, 2016)

63

2.2. Rastrigin function

Rastrigin function was modelled out of the Sphere function with a modulator

cosine term to produce many local minima, thereby making the function highly

multimodal. Its initialization range is between [−15, 15]. The contour of this

function is made up of a great number of local minima where its value enlarges

with the distance to the universal minimum.

𝑓2(𝑥) = 10𝑛 + ∑ (𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖))𝑛

𝑖=1 (4)

Fig. 3. 2D plot for Rastrigin's function, (“Virtual Library of Simulation Experiments:

Test Functions and Datasets”, 2016)

2.3. Ackley Function

 Ackley function has an exponential term that covers up its surface with

many local minima. It is characterized by a nearly flat outer region, and a large

hole at the centre. With an initialization range of [−32.768, 32.768], the

complexity of this function is moderated. Obtaining very fine results for the

Ackley function revolves around applying an effective combination of exploratory

and exploitative components in the search strategy. The function definition is

stated in (5) with its plot in fig 4.

64

𝑓3(𝑥) = −𝑎 𝑒𝑥𝑝 (√
1

𝑑

−𝑏
∑ 𝑥𝑖

2𝑑
𝑖=1) − 𝑒𝑥𝑝 (

1

𝑑
∑ cos(𝑐𝑥𝑖)𝑑

𝑖=1) + 𝑎 + exp(1) (5)

where recommended variable values are: a = 20, b = 0.2 and c = 2π.

Fig. 4. 2D plot for Ackely function (“Virtual Library of Simulation Experiments:

Test Functions and Datasets”, 2016)

2.4. Rosenbrock function

Rosenbrock function also known as banana or valley function is a traditional

optimization problem with a duo dimensional function illustrating a deep valley

having the form of a parabola of the shape 𝑥1
2 = 𝑥2 that results to the global mini-

mum. Owing to the non-linearity of the valley, lots of algorithms congregate

slowly since they vary the direction of the search constantly and for this reason

this problem has been repetitively used in assessing gradient-based optimization

algorithms performance. Valley function has an initialization range of [−2.048, 2.048].

𝑓4(𝑥) = ∑ [100. (𝑥𝑖+1 − 𝑥2
𝑖)2 + (𝑥𝑖 − 1)2]𝑛−1

𝑖=1 (6)

65

Fig. 5. Plot for Rosenbrock function, (“Virtual Library of Simulation Experiments:

Test Functions and Datasets”, 2016)

2.5. Schwefel function

The Schwefel function is complex, with many local minima. Initialization

range for the function is [−500, 500]. The surface of Schwefel function is made

up of a large amount of peaks and valleys. It is a function which possesses two

global minimum but the second best minimum stretches away from the global

minimum that lots of search algorithms are shuttered in. The function is defined

as:

𝑓5(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖sin (√|𝑥𝑖|𝑑
𝑖=1 (7)

In addition, the global minimum is close to the limits of the domain. The function

has a minimum value of 2 * -418.9829 = -837.9658 which is always hard to find

because it is relatively far from the second best solution.

66

Fig. 6. 2D plot of Schwefel funtction (own study)

2.6. Michalewicz function

This function is multimodal with d! local optima. It has a parameter m which

describes the "steepness" of the valleys or edges with larger m values leading to

more complex search behaving like a needle in a haystack. This function is mostly

used to test and check the efficiency of numerical optimization algorithms.

𝑓6(𝑥) = − ∑ sin(𝑥𝑖) 𝑠𝑖𝑛2𝑚 (
𝑖𝑥𝑖

2

𝜋
)𝑑

𝑖=1 (8)

Ideally, the suggested value of m = 10. The function illustration is defined as (8)

with a 2D plot in fig. 7.

67

Fig. 7. 2D plot of Michalewicz function, (“Virtual Library of Simulation Experiments:

Test Functions and Datasets”, 2016).

3. META-HEURISTIC ALGORITHM

Meta-heuristic algorithms are increasingly being useful to solving complicated

optimization problems and further to develop solutions to problems with complex

nature in countless applications. This is probably due to their ability to handle

difficult, ill-behaved, non-linear and multi-dimensional optimization problems as

suggested by most researchers and practitioners with the latest of them demon-

strated by Pansare and Kavade (2012), Madić et al. (2013), Zain et al. (2010),

Ciurana et al. (2009), Rao et al. (2010), Samanta and Chakraborty (2011). In this

study, an effort is made to compare the optimization results of two meta-heuristic

algorithms applied to solving complex optimization problems, namely, Multi-

Swarm optimisation and Bats Algorithm.

3.1.1. Multi Swarm Optimisation

Particle swarm optimization (PSO) has several extensions of which the Multi-

swarm optimization is one. PSO mocks-up the activities of flocks such as that of

birds and schools of fish. MSO do not rely on one (standard) swarm but rather fall

on multiple sub-swarms practice (McCaffrey, 2016). The universal approach

in multi-swarm optimization is that whilst a specific diversification process settles

on where and when to initiate the sub-swarms, every sub-swarm centres

on a specific region. MSO is meta-heuristic, in that the method has a set of design

standards and procedures that can be used to create an explicit algorithm to solve

a particular optimization problem. Since Multi-swarm optimization is an iterative

68

process, in its operation, it looks for a better solution, taking into consideration

the best solution identified by any of the swarm particle until some stopping

criteria is met. A characteristic feature of multi-swarms is that their preliminary

positions and preliminary velocities are not arbitrarily selected as in particle

swarms. As an alternative, they preserve some information from the earlier paths

of the particles. In most cases, the improvement of multi-swarm systems guides

to design decisions that on most occasions do not exist throughout the original

growth of particle swarm optimization, for instance the number of particles to

employ in every sub-swarm, the most favourable value for the check factor and

the effects of logical starting positions and starting velocities. Having a clear

identified guideline, these design decisions have been carefully revised with clear

examples leading to the use of non-random primary positions and primary

velocities to develop solutions in multi-swarm systems, which fail for single-

swarms (Chen & Montgomery, 2011). Multi swarm optimization has been used

to solve many optimization problems. MSO is applicable to solving several

machine-learning situations, such as approximating the weights and bias figures

of an artificial neural network or approximating the weights of frail learners in

ensemble organization and prediction (McCaffrey, 2016).

Zhang and Ding (2011), suggested a multi-swarm self-adaptive and coopera-

tive particle swarm optimization (MSCPSO). Their approach make use of four

sub-swarms: with sub-swarms 1 and 2 being basic, sub-swarm 3 manipulated by

sub-swarms 1 and 2, whereas sub-swarm 4 is influenced by sub-swarms 1, 2 and

3. In the end all four sub-swarms make use of a cooperative strategy. Although

it attained good performances in fine-tuning complex multimodal functions,

the approach fail in its application to practical engineering problems.

The activity of MSO which forms a key procedure in its operation is that of

calculating for its particle new velocity (9). The velocity of a particle is being

swayed by a number of factors such as: the present location of a particle, a particle

best recognized location, the best recognized location of whichever particle in the

same swarm as the particle and finally, the finest recognised location of whichever

particle in any swarm. Equation (10) computes a particle new position after a new

velocity has been identified

(𝑡 + 1) = 𝑤 ∗ 𝑣(𝑡) + (𝑐1 ∗ 𝑟1) ∗ (𝑝(𝑡) − 𝑥(𝑡) + (𝑐2 ∗ 𝑟2) ∗ (9)

∗ (𝑠(𝑡) − 𝑥(𝑡)) + (𝑐3 ∗ 𝑟3) ∗ (𝑚(𝑡) − (𝑥))

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡 + 1) (10)

where the term v(t+1) represent the new velocity, v(t) is the recent velocity, x(t)

is the recent location, p(t) represent particle’s best recognized location,

s(t) is the finest location of any particle in the particle’s swarm and the finest

location of whichever particle in any swarm is m(t). In addition to the definition

of terms, inertia factor, w and c1, c2 and c3 are all constant with universal names

69

as cognitive, social, and global weights with r1, r2, and r3 being random values

between 0 and 1 which present a randomization effect to every velocity update.

Reasonable accepted values suggested by a number of particle swarm

optimization researches presents 0.729, 1.49445, and 1.49445 for w, c1, and c2

respectively. The constant along with the random values and the inertia factor

institute a maximum change for every component of the new velocity. Those

constants decide to a large extent how each term influences the activity of a

particle. Constant c3 is at its infancy in MSO and not much research has gone into

it in obtaining a standard acceptable value.

One characteristic feature of Multi swarm optimisation technique is such that,

a particle to be used may die and in such case, it needs to be substituted by a new

particle at an arbitrary location, or it may immigrate such that in this case, the

swarm is exchange with an arbitrarily chosen particle. The death and immigration

instrument attach some element of uncertainty that help prevent the algorithm

from returning non-optimal solution but a universal best solution. The next section

outlines MSO algorithm.

3.1.2. Multi-Swarm Algorithm Pseudo-Code

Multi-Swarm Algorithm (McCaffrey, 2016) is one type nature-inspired

heuristic algorithm which presents strong robustness and the ability to find

optimal solution. The main steps of the algorithm are given below:

for each swarm iteration

 create particles at arbitrary locations

end for

whileas epoch < maximumEpochs iteration

 for-every swarm iteration

 for-every particle in swarm iteration

was particle dead?

 was particle immigrating?

calculate new velocity with concentration on

 current velocity, best particle location,

 best swarm location, and

 best overall location

 adopt new velocity to renew location

verify if new location is a new particle

 best, or a new swarm best, or

 a new universal best

 end every swarm

 end every particle

end while

return best universal location found

70

3.1.3. Bat Algorithm

The Bat algorithm (BA), a meta-heuristic algorithm is stimulated by the acti-

vities of bats for global optimization. It principles was inspired and developed

in 2010 by Xin-She Yang. This algorithm is a multi-agent approach stimulated

by the echolocation conducts of bats, with changing rates of pulse of emission

and loudness, where a single pulse can last a little over thousandths of a second

(ranging about 8–10 ms) (Altringham, 1996). Yet, the pulse has a continuous

frequency which is more often than not in the range of 25–150 kHz which

is equivalent to the wavelengths of 2–14 mm.

Yang identified three key features of the micro-bat to illustrate the fundamental

structure of BA. These important characteristics as used by Yang are identified as

follows (Yang, 2010):

I. Although greater numbers of species of bats make use of echolocation to

hunt their prey, only a few fail to adopt this approach but may adopt another

form of hunting technique. Conversely, the micro-bat is a renowned

example of broadly using the echolocation technique. For this reason, the

first characteristic is the behaviour of echolocation.

I. The frequency to which micro-bat transmits a predetermined frequency

𝑓𝑚𝑖𝑛with an inconsistent wavelength λ and the loudness 𝐴𝑜 to look for prey.

II. Loudness by micro-bat can be regulated in several ways. Ideally,

the loudness is believed to progress from an optimistic large value 𝐴𝑜 to

𝐴𝑚𝑖𝑛, a minimum constant value.

Yang’s method in simulations, make use of virtual bats in nature to identify the

updated rules of their location xi and velocities 𝑣𝑖 in a D-dimensional search

space. Fresh solutions 𝑥1
𝑡 and velocities 𝑣1

𝑡 at given time step t are obtained by

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 – 𝑓𝑚𝑖𝑛) β,

𝑣1
𝑡 = 𝑣1

𝑡−1 + (𝑥1
𝑡 – 𝑥∗) 𝑓𝑖, (11)

calculate new velocity with concentration on

 current velocity, best particle location,

 best swarm location, and

 best overall location

adopt new velocity to renew location

verify if new location is a new particle

 best, or a new swarm best, or

 a new universal best

 end every swarm

 end every particle

end while

return best universal location found

71

𝑥1
𝑡 = 𝑥1

𝑡−1 + 𝑣1
𝑡,

where f is the frequency the bat use in hunting for its prey, with the suffixes, min

and max, standing for the minimum and maximum value, and β ∈ [0, 1] represent

the random vector obtained from a uniform distribution 𝑥∗, designate the present

global near best solution which is obtained after evaluating all the results among

all the n bats. A new solution for each bat is produced locally once a solution is

chosen among the current best solutions, using random walk for the local search

part. This is illustrated as:

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀 𝐴𝑡 (12)

where 𝜀∈ [−1, 1] = random number, 𝐴𝑡 = (𝐴𝑖
𝑡) represent the average loudness of

every bat at the present time step.

The process is iterative therefore in addition, 𝐴𝑖, the loudness and 𝑟𝑖the pulse

emission rate are renewed accordingly as the iterations progresses. These formulas

are illustrated in equation 13.

𝐴1
𝑡−1 = 𝛼𝐴𝑖

𝑡 ,

 𝑟1
𝑡+1 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)], (13)

Here α and 𝛾 are constants. For simplicity in Yang’s experiments, α = 𝛾 = 0.9

(Tsai et al., 2012). Per the idealization and approximations techniques employed,

a summary of the basic steps of the bat algorithm is explained in the pseudo-code

(Zhou et al., 2014).

Assume objective function f(x), x = [x1,x2,…,xd]T

Initialize the bat population xi(I = 1, 2, …, n) and vi

Identify pulse frequency fi at xi

Initialise pulse rates ri and the loudness Ai

While (t < Max number of iterations)

Generate new solutions by adjusting frequency,

and updating velocities and locations/solutions

If (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected solution

 end if

Generate a new solution by flying randomly

If (rand < Ai& f (xi) < f (x*))

Accept the new solutions

Increase ri and reduce Ai

end if

grade the bats and find the recent best x*

end while

Post-process results and visualisation

72

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1. Parameters and Setting

The experimental settings is executed in Microsoft Visual C# 2010 version

10.0.3.319.1 RTMRel and carried out on a HP ProBook 4540s Computer with the

processor of Intel(R) Core(TM) i3-3110M CPU at 2.40 GHz and 4096 GB

memory. The general control parameters for both algorithms are the size of popu-

lation and the number of maximum generation. The maximum numbers of cycles

or generations used for the experiment is 1,000 with 6 dimensions (10, 15, 20, 25

and 30 and 35) of population size 25. The initialisation range [min, max] for all

test functions are set to its global specific values.

Other specific control parameters and their values of the algorithms are

presented in table 1.

Tab. 1. Parameter settings of algorithms (own study)

Multi Swarm Optimisation Bats Algorithm

Parameter Setting Value/Range Parameter Setting Value/Range

Number of swarms 5 Initial Pulse, 𝑟𝑖
0 [0, 1]

Randomisation effect

(r1, r2, r3)
[0, 1] Initial loudness, 𝐴𝑖

0 [0.5, 2]

inertia weight w 0.729 [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥) [0, 50]

cognitive, c1 1.49445 Random number, ∈ [0, 1]

social, c2 1.49445

global weight, c3 0.3645

Death 0.001

Immigrate 0.005

73

4.2. Results and Findings

Tab. 2. Results obtained by BA and MSO Algorithms on 𝒇𝟏–𝒇𝟔

Function
Algorithm

Dim

BA MSO

Value
Processing

Time (ms)
Value

Processing

Time (ms)

Griewank
𝑓1

10

15

20

25

30

35

36.7378

149.251

159.262

299.961

265.519

427.209

24.7027

27.6363

25.5866

28.2889

30.7918

30.3462

0.06151

0.02464

0.01232

0.00000

0.00000

0.00000

411.6582

560.5681

690.3489

858.6691

995.7082

1155.371

Mean Best 222.99 27.89 0.0164 778.72

Rastrigin

𝑓2

10

15

20

25

30

35

351.313

514.270

709.450

798.425

886.754

1429.693

22.999

27.217

29.992

29.459

30.810

30.708

0.00545

3.97984

11.9395

6.96471

17.9093

37.8108

348.5491

487.8739

628.4436

764.1113

899.4347

1041.189

Mean Best 781.65 28.53 13.102 695.06

Ackley

𝑓3

10

15

20

25

30

35

18.9583

17.3149

19.5170

20.2093

19.9750

20.0563

16.3993

28.6699

27.4071

28.9098

31.7634

32.1055

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

363.1926

505.2514

632.0096

772.8162

900.9023

1109.397

Mean Best 19.338 27.543 0 713.93

Rosenbrock
𝑓4

10

15

20

25

30

35

26823760.1

23429221.4

71148367.85

94167522.53

131685159.98

155353591.25

21.0828

26.007

26.1592

29.5329

32.0499

28.117

0.03984

0.44539

0.28202

7.76763

19.95645

25.03745

291.2593

401.9415

513.104

613.4289

711.3804

831.7191

Mean Best 60464937.2 27.158 11.088 560.47

Schwefel

𝑓5

10

15

20

25

30

35

-79.3260

-98.2885

-109.9045

-128.1006

-227.9366

-254.4494

24.1545

23.1431

27.9776

23.5357

30.6533

34.9313

-117.88

-161.75

-154.61

-171.96

-354.54

-398.49

388.2503

549.3576

702.773

912.7342

1019.856

1183.956

Mean Best -9.1676 27.399 -17984.54 792.82

Michalewicz

𝑓6

10

15

20

25

30

35

-3.7174

-4.4228

-4.9680

-7.6216

-7.8105

-8.9912

25.4515

24.2584

26.8576

27.1193

30.9676

35.9179

-3.57858

-3.96202

-5.96101

-6.46669

-6.22626

-8.39956

536.9318

756.5302

990.6771

1202.339

1426.182

1659.426

Mean Best -6.2553 28.429 -5.7657 1095.3

74

Fig 8 and 9 illustrates a graphical representation of the mean best value and

time of the performance of the algorithms. From table 1.0 Bats algorithms

performance on difficult functions such as Griewank and Ackley is on the

downside.Functions with flat outer region with a large hole at its center seem to

have no effect on MSO. MSO performance on these functions indicates its ability

to moving out of the local minimum in the search space and locating the global

minima. That said, MSO can converge to the minimum of both functions as

dimensions increases. On Rosenbrock function, 𝑓4, Bats algorithm returned very

bad results which was far fetch from the global optima. Conversely MSO produce

very good optimum solutions.

With regards to functions with deep valley with parabola shape, although MSO

did return much better results in dimensions 10 and 15, later results obtain were a

little larger. Bats algorithm on the other hand demonstrates its inability to return a

better result returning largely very insignificant values with a flip flop approach

(peaks and valleys). BA deteriorates substantially in its performance on this

function than any other.

Fig. 8. Mean best value and time for f1–f3 by BA and MSO (own study)

0

100

200

300

400

500

600

700

800

Value Time Value Time

BA MSO

F1

F2

F3

75

Fig. 9. Mean best value and time for f5 and f6 by BA and MSOs (own study)

From the computational experiment, 𝑓𝟓 and 𝑓𝟔 demonstrated better conver-

gence rate on both algorithms as they returned close to optimal solutions. As MSO

outperforms BA at 𝑓𝟓, returning best results, BA on the other hand outperforms

MSO at 𝑓𝟔. BA shows faster, better convergence rate and a demonstration on its

effectiveness in testing optimisation problem than MSO.

On the whole, BA appears to be better in terms of computation process speed

rate. This may possibly be due to the outcome from producing completely

different arbitrary numbers to be used in the generation procedures of the

algorithm. MSO outperforms BA in five non-linear optimisation problems

experimented by returning better, optimum and close to optimal values.

The searching ability of groups of swarm is very effective for local optimisation

thus, the MSO algorithm success in exhibiting better performance on optimising

multivariable and multimodal functions. This proof indicates the powerful

potential of MSO in solving non-linear optimization problems.

5. CONCLUSION

In this paper, a comparative study of the performance of population based

algorithms and swarm intelligence was undertaken. The target is to compare

the performance of BA and MSO algorithm in fine-tuning continuous

unconstrained non linear optimisation problem. With the intention of demon-

strating the performance of both algorithms, they were exposed to six multi

dimensional numerical multimodal benchmark functions. From the experimented

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

Value Time Value Time

BA MSO

V
al

u
e

 a
n

d
 t

im
e

Test function

F5

F6

76

simulation results, the conclusion was that, the MSO algorithm out performs BA

in returning optimal results although lags behind in processing time. MSO

possessed the tendency to escape from the local minimum, so therefore can be

used efficiently for multimodal and multivariable optimization. There are several

gray areas which remain for future studies such as the exploration into the unique

behaviour and characters of the bench mark functions on meta-heuristic

optimisation algorithms and the effects of the parameters on the performance

of the algorithms

REFERENCES

Altringham, J. D. (1996). Bats: Biology and Behaviour. Oxford University Press.

Blum, Ch., Roli, A., & Sampels, M. (2008). Hybrid Metaheuristics. An Emerging Approach

to Optimization. Springer.

Chen, S., & Montgomery, J. (2011). Selection Strategies for Initial Positions and Initial Velocities

in Multi-optima Particle Swarms. Gecco-2011: Proceedings of the 13th Annual Genetic and

Evolutionary Computation Conference, 53-60.

Ciurana, J., Arias, G., & Ozel, T. (2009). Neural Network Modeling and Particle Swarm Optimi-

zation (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13

Steel. Materials and Manufacturing Processes, 24(3), 358-368. doi:10.1080/

10426910802679568

Example Functions (single and multi-objective functions). Retrieved August, 2016, from

http://www.geatbx.com/docu/fcnindex-01.html#P150_6749

Friedman, J. H. (1994). An overview of predictive learning and function approximation.

In V. Cherkassky, J. H. Friedman, & H. Wechsler (Eds.), Statistics to Neural Networks.

Theory and Pattern Recognition Applications. NATO ASI Series F (pp. 1-61). Springer.

Gal, T., & Nedoma, J. (1972). Multiparametric Linear Programming. Management Science Series

a-Theory, 18(7), 406-422. doi:10.1287/mnsc.18.7.406

Madić, М., Marković, D., & Radovanović, M. (2013). Comparison of meta-heuristic algorithms

for solving machining optimization problems. Mechanical Engineering, 11(1), 29-44.

McCaffrey, J. D. (2016, August). Multi-Swarm Optimization with C#. Retrieved from

https://jamesmccaffrey.wordpress.com/2013/09/16/multi-swarm-optimization-with-c

Pal, S. K., Rai, C. S., & Singh, P. A. (2012). Comparative Study of Firefly Algorithm and Particle

Swarm Optimization for Noisy Non-Linear Optimization Problems. I.J. Intelligent Systems

and Applications, 10, 50-57. doi: 10.5815/ijisa.2012.10.06

Pansare, V. B., & Kavade, M. V. (2012). Optimization of cutting parameters in multipass turning

operation using ant colony algorithm. International Journal of Engineering Science &

Advanced Technology, 2(4), 955-960.

Rao, R. V., Pawar, P. J., & Davim, J. P. (2010). Optimisation of process parameters of mechanical

type advanced machining processes using a simulated annealing algorithm. International

Journal of Materials & Product Technology, 37(1-2), 83-101.

Samanta, S., & Chakraborty, S. (2011). Parametric optimization of some non-traditional machining

processes using artificial bee colony algorithm. Engineering Applications of Artificial

Intelligence, 24(6), 946-957. doi:10.1016/j.engappai.2011.03.009

Tsai, P. W., Pan, J. S., Liao, B. Y., Tsai, M. J., & Istanda, V. (2012). Bat Algorithm Inspired

Algorithm for Solving Numerical Optimization Problems. Applied Mechanics and Materials,

148-149, 134-137. doi:10.4028/www.scientific.net/AMM.148-149.134

Virtual Library of Simulation Experiments: Test Functions and Datasets. Retrieved August, 2016,

from https://www.sfu.ca/~ssurjano/optimization.html

77

Yang, X. S. (2008). Nature-Inspired Metaheuristic Algorithms. Luniver Press.

Yang, X. S. (2010). A new metaheuristic Bat-inspired algorithm. In J. R. González, D. A. Pelta,

C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010) (pp. 65-74). Springer.

Yuan, B. (2016, August). A Brief Introduction to Global Optimization. Retrieved from

http://boyuan.global-optimization.com/optimization.htm

Zain, A. M., Haron, H., & Sharif, S. (2010). Application of GA to optimize cutting conditions for

minimizing surface roughness in end milling machining process. Expert Systems with

Applications, 37(6), 4650-4659. doi:10.1016/j.eswa.2009.12.043

Zhang, J. Z., & Ding, X. M. (2011). A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm

Optimization. Engineering Applications of Artificial Intelligence, 24(6), 958-967.

doi:10.1016/j.engappai.2011.05.010

Zhou, Y. Q., Xie, J., Li, L. L., & Ma, M. Z. (2014). Cloud Model Bat Algorithm. The Scientific

World Journal, 2014. doi:10.1155/2014/237102

