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Abstract 

A study branch that mocks-up a population of network of swarms or agents 

with the ability to self-organise is Swarm intelligence. In spite of the huge 

amount of work that has been done in this area in both theoretically and 

empirically and the greater success that has been attained in several 

aspects, it is still ongoing and at its infant stage. An immune system, a cloud 

of bats, or a flock of birds are distinctive examples of a swarm system.  

In this study, two types of meta-heuristics algorithms based on population 

and swarm intelligence - Multi Swarm Optimization (MSO) and Bat 

algorithms (BA) – are set up to find optimal solutions of continuous non-

linear optimisation models. In order to analyze and compare perfect 

solutions at the expense of performance of both algorithms, a chain  

of computational experiments on six generally used test functions for 

assessing the accuracy and the performance of algorithms, in swarm 

intelligence fields are used. Computational experiments show that MSO 

algorithm seems much superior to BA. 
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1. INTRODUCTION 

Optimization problems are ever-present in our daily life and often come  

in an array of forms. Ideally, Optimization is the activity of searching for the most 

favourable solution among a set of solutions to the problem based on some 

performance criteria. Optimisation problems are traditional and most widely 

studied problem in Combinatorial Optimization (Yang, 2008). Objective 

optimization (objective programming) is an area in computing that is concerned 

with mathematical optimization problems with defined decision making criteria, 

that involves some objective function to be optimized. In lots of technical fields, 

non linear objective optimization dealings in uninterrupted domains involve  

a costly numerical simulation with a varied objective function. Much of these 

problems can be found in broad applications as finance and logistics, 

manufacturing and in engineering. Practically, a crude solution to a continuous 

unconstrained optimisation problem will be meant to carry out a predefined task 

in some proficient way or the maximum quality or to generate maximum yields 

making reference to a given limited resource (Yuan, 2016). 

Although not much research study has gone into single and multi-objective non 

linear optimization problems, most researchers have varied viewpoints  

and as a result, there exist diverse solutions and goals when defining and solving 

them. Though the paramount solutions can possibly be worked out by hand  

or through comprehensive search in some plain situations, programmed optimi-

zation techniques are needed to respond to most non-trivial problems largely due 

to their sizes and complex modality of the search space. 

Unconstrained non linear optimization is a dynamic and fast rising research 

area with a greater impact in the real world. Regardless of the existence of a broad 

variety of such problems that may look relatively different from another, there are 

complete or approximate algorithms available to tackle like problems in complex 

situations. The process of fine-tuning optimisation can be likened to finding  

the highest peak of a landscape with little attention to the actual meaning of the 

problem as in fig 1. 
 

 

Fig. 1. Visualisation of optimisation problem (Yuan, 2016) 
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This paper makes use of two approximate algorithms, Multi Swarm 

Optimisation (MSO) and Bat algorithm (BA) for presenting a solution to the 

problem. Some authors claim these methods are generally termed meta-heuristic 

algorithms (Yang, 2008; Blum et al., 2008)  although they are based on the 

intelligence of swarm. These methods dwell on the assurance of obtaining optimal 

solutions in practically limited time frame. Additionally, no gradient information 

is needed. This comes in handy in the situation of optimization problems which 

allows for the objective function to be given completely (that said, when objective 

function results are attained by simulation), or when there is non-differentiable 

objective function. 

The paper aims to draw comparison between the Multi Swarm algorithm  

and Bat algorithm for solving continues unconstrained non linear single objective 

optimisation problems. The remains of the paper are arranged as follows. Section 

2 in brief examines the non linear optimization mathematical models for experi-

menttation; Section 3 details brief explanation of the MSO and BA for testing  

and solving the problem. Experimental results are revealed in Section 4 and finally 

in Section 5 the conclusion of the work. 

2. NON LINEAR OPTIMISATION PROBLEM 

A Non-linear optimization problem is one in which in any case one of the con-

straints of the decision variable is a flat nonlinear function. Identified and resear-

ched in connection to sensitivity analysis, its original mention can be established 

from a thesis in 1952.  In general optimisation problem may be defined mathema-

tically by (Gal & Nedoma, 1972) as 
 

𝑃 ∗ (𝜃) =  𝑚𝑖𝑛𝑥∈ℝ𝑛𝑓(𝑥, 𝑜)        (1) 

g(x, 𝜃) ≤ 0, 

𝜃 ∈  Θ ⊂ ℝ𝑚 
 

where: 𝑥 is the optimisation variable, 𝜃 are the parameters, 𝑓(𝑥, 𝑜)is the objective 

function, and 𝑔(𝑥, 𝜃)represent the constraints with Θthe parameter space. 

 

A typical example of a Non-linear function description may take a form as: 
 

2𝑥1
2+ 𝑥2

3+ log 𝑥3      (2) 

where: 𝑥1, 𝑥2 and 𝑥3 are decision variables.  
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Practically, the mathematical modelling of this problem may include variables that 

exponent to a number or a power, and/or multiplied or divided by some other 

variables. In most cases they make use of transcendental functions as exp, log, 

sine and cosine. A function is said to be multimodal if it has beyond one local 

optima. A variable function is separable if it can be modelled as one variable  

of a sum of functions. In this case the separability is directly correlated to the 

concept of epistasis or interrelation along with the variables of the function. 

Friedman (1994) presented a study on dimensionality problems and its features.  

Saibal et al (2012) undertake a study on Noisy Non-Linear Optimization Problems 

and made a comparative analysis of Firefly Algorithm and Particle Swarm 

Optimization. In the end, they concluded the superior-ability of firefly over 

particle swarm in solving noisy non linear optimisation problems. 

In order to explore the difficulty of same problems behaviour of non linear 

optimisation problem, the next section of the paper considers six classical 

unconstrained Non-Linear optimization models taken from (“Example Functions 

(single and multi-objective functions)”, 2016; “Virtual Library of Simulation 

Experiments: Test Functions and Datasets”, 2016) with its function definition  

and a 2D graphical representation. 
 

2.1. Griewank Function 

 

Griewank function has a lot of widespread local minima. Nevertheless, the 

position of the minima is frequently distributed. It has its global minimum value 

at 0 with the function initialization range from [−600,600]. Griewank function 

contain some product term that initiates interdependence with the variables.  
 

𝑓1(𝑥) =  ∑
𝑥𝑖

2

4000
𝑛
𝑖=1 − ∏ 𝑐𝑜𝑠𝑛

𝑖−1 (
𝑥𝑖

√𝑖
) + 1   (3) 

 

Fig. 2. 2D Plot for Griewangk's function (“Virtual Library of Simulation Experiments:  

Test Functions and Datasets”, 2016) 
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2.2. Rastrigin function 

 

Rastrigin function was modelled out of the Sphere function with a modulator 

cosine term to produce many local minima, thereby making the function highly 

multimodal. Its initialization range is between [−15, 15]. The contour of this 

function is made up of a great number of local minima where its value enlarges 

with the distance to the universal minimum.  
 

𝑓2(𝑥) =  10𝑛 + ∑ (𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖))𝑛

𝑖=1   (4) 

 

Fig. 3. 2D plot for Rastrigin's function, (“Virtual Library of Simulation Experiments:  

Test Functions and Datasets”, 2016) 

 

 

2.3. Ackley Function 

 Ackley function has an exponential term that covers up its surface with 

many local minima. It is characterized by a nearly flat outer region, and a large 

hole at the centre. With an initialization range of [−32.768, 32.768], the 

complexity of this function is moderated. Obtaining very fine results for the 

Ackley function revolves around applying an effective combination of exploratory 

and exploitative components in the search strategy. The function definition is 

stated in (5) with its plot in fig 4. 
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𝑓3(𝑥) =  −𝑎 𝑒𝑥𝑝 ( √
1

𝑑

−𝑏
∑ 𝑥𝑖

2𝑑
𝑖=1 ) −  𝑒𝑥𝑝 (

1

𝑑
∑ cos(𝑐𝑥𝑖)𝑑

𝑖=1 ) +  𝑎 + exp(1)  (5) 

where recommended variable values are: a = 20, b = 0.2 and c = 2π.  

 

Fig. 4. 2D plot for Ackely function (“Virtual Library of Simulation Experiments:  

Test Functions and Datasets”, 2016) 

 

2.4. Rosenbrock function 

Rosenbrock function also known as banana or valley function is a traditional 

optimization problem with a duo dimensional function illustrating a deep valley 

having the form of a parabola of the shape 𝑥1
2 = 𝑥2 that results to the global mini-

mum. Owing to the non-linearity of the valley, lots of algorithms congregate 

slowly since they vary the direction of the search constantly and for this reason 

this problem has been repetitively used in assessing gradient-based optimization 

algorithms performance. Valley function has an initialization range of [−2.048, 2.048]. 

 

𝑓4(𝑥) =  ∑ [100. (𝑥𝑖+1 −  𝑥2
𝑖)2 + (𝑥𝑖 −  1)2]𝑛−1

𝑖=1          (6) 
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Fig. 5. Plot for Rosenbrock function, (“Virtual Library of Simulation Experiments:  

Test Functions and Datasets”, 2016) 

 

2.5. Schwefel function 

The Schwefel function is complex, with many local minima. Initialization 

range for the function is [−500, 500]. The surface of Schwefel function is made 

up of a large amount of peaks and valleys. It is a function which possesses two 

global minimum but the second best minimum stretches away from the global 

minimum that lots of search algorithms are shuttered in. The function is defined 

as: 
 

𝑓5(𝑥) =  418.9829𝑑 −  ∑ 𝑥𝑖sin (√|𝑥𝑖|𝑑
𝑖=1    (7) 

In addition, the global minimum is close to the limits of the domain. The function 

has a minimum value of 2 * -418.9829 = -837.9658 which is always hard to find 

because it is relatively far from the second best solution. 
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Fig. 6. 2D plot of Schwefel funtction (own study) 

 

2.6. Michalewicz function 

This function is multimodal with d! local optima. It has a parameter m which 

describes the "steepness" of the valleys or edges with larger m values leading to 

more complex search behaving like a needle in a haystack. This function is mostly 

used to test and check the efficiency of numerical optimization algorithms. 
 

𝑓6(𝑥) =  − ∑ sin(𝑥𝑖) 𝑠𝑖𝑛2𝑚 (
𝑖𝑥𝑖

2

𝜋
)𝑑

𝑖=1     (8) 

Ideally, the suggested value of m = 10.  The function illustration is defined as (8) 

with a 2D plot in fig. 7. 
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Fig. 7. 2D plot of Michalewicz function, (“Virtual Library of Simulation Experiments:  

Test Functions and Datasets”, 2016). 

3. META-HEURISTIC ALGORITHM 

Meta-heuristic algorithms are increasingly being useful to solving complicated 

optimization problems and further to develop solutions to problems with complex 

nature in countless applications. This is probably due to their ability to handle 

difficult, ill-behaved, non-linear and multi-dimensional optimization problems as 

suggested by most researchers and practitioners with the latest of them demon-

strated by Pansare and Kavade (2012), Madić et al. (2013), Zain et al. (2010), 

Ciurana et al. (2009), Rao et al. (2010), Samanta and Chakraborty (2011). In this 

study, an effort is made to compare the optimization results of two meta-heuristic 

algorithms applied to solving complex optimization problems, namely, Multi-

Swarm optimisation and Bats Algorithm. 

 

3.1.1. Multi Swarm Optimisation 

 

Particle swarm optimization (PSO) has several extensions of which the Multi-

swarm optimization is one. PSO mocks-up the activities of flocks such as that of 

birds and schools of fish. MSO do not rely on one (standard) swarm but rather fall 

on multiple sub-swarms practice (McCaffrey, 2016). The universal approach  

in multi-swarm optimization is that whilst a specific diversification process settles 

on where and when to initiate the sub-swarms, every sub-swarm centres  

on a specific region. MSO is meta-heuristic, in that the method has a set of design 

standards and procedures that can be used to create an explicit algorithm to solve 

a particular optimization problem. Since Multi-swarm optimization is an iterative 
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process, in its operation, it looks for a better solution, taking into consideration 

the best solution identified by any of the swarm particle until some stopping 

criteria is met. A characteristic feature of multi-swarms is that their preliminary 

positions and preliminary velocities are not arbitrarily selected as in particle 

swarms. As an alternative, they preserve some information from the earlier paths 

of the particles. In most cases, the improvement of multi-swarm systems guides 

to design decisions that on most occasions do not exist throughout the original 

growth of particle swarm optimization, for instance the number of particles to 

employ in every sub-swarm, the most favourable value for the check factor and 

the effects of logical starting positions and starting velocities.  Having a clear 

identified guideline, these design decisions have been carefully revised with clear 

examples leading to the use of non-random primary positions and primary 

velocities to develop solutions in multi-swarm systems, which fail for single-

swarms (Chen & Montgomery, 2011).  Multi swarm optimization has been used 

to solve many optimization problems. MSO is applicable to solving several 

machine-learning situations, such as approximating the weights and bias figures 

of an artificial neural network or approximating the weights of frail learners in 

ensemble organization and prediction (McCaffrey, 2016). 

Zhang and Ding (2011), suggested a multi-swarm self-adaptive and coopera-

tive particle swarm optimization (MSCPSO). Their approach make use of four 

sub-swarms:  with sub-swarms 1 and 2 being basic, sub-swarm 3 manipulated by 

sub-swarms 1 and 2, whereas sub-swarm 4 is influenced by sub-swarms 1, 2 and 

3. In the end all four sub-swarms make use of a cooperative strategy. Although  

it attained good performances in fine-tuning complex multimodal functions, 

the approach fail in its application to practical engineering problems.  

The activity of MSO which forms a key procedure in its operation is that of 

calculating for its particle new velocity (9). The velocity of a particle is being 

swayed by a number of factors such as: the present location of a particle, a particle 

best recognized location, the best recognized location of whichever particle in the 

same swarm as the particle and finally, the finest recognised location of whichever 

particle in any swarm. Equation (10) computes a particle new position after a new 

velocity has been identified 
 

(𝑡 + 1) = 𝑤 ∗ 𝑣(𝑡) + (𝑐1 ∗ 𝑟1) ∗ (𝑝(𝑡) − 𝑥(𝑡) + (𝑐2 ∗ 𝑟2) ∗  (9) 

∗ (𝑠(𝑡) − 𝑥(𝑡)) + (𝑐3 ∗ 𝑟3) ∗ (𝑚(𝑡) − (𝑥)) 
 

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡 + 1)    (10) 
 

where the term v(t+1) represent the new velocity, v(t) is the recent velocity, x(t) 

is the recent location, p(t)  represent particle’s best recognized location,  

s(t) is the finest location of any particle in the particle’s swarm and the finest 

location of whichever particle in any swarm is m(t). In addition to the definition 

of terms, inertia factor, w and c1, c2 and c3 are all constant with universal names 
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as cognitive, social, and global weights with r1, r2, and r3 being random values 

between 0 and 1 which present a randomization effect to every velocity update. 

Reasonable accepted values suggested by a number of particle swarm 

optimization researches presents 0.729, 1.49445, and 1.49445 for w, c1, and c2 

respectively. The constant along with the random values and the inertia factor 

institute a maximum change for every component of the new velocity. Those 

constants decide to a large extent how each term influences the activity of a 

particle. Constant c3 is at its infancy in MSO and not much research has gone into 

it in obtaining a standard acceptable value. 

One characteristic feature of  Multi swarm optimisation technique is such that,  

a particle to be used may die and in such case, it needs to be substituted by a new 

particle at an arbitrary location, or it may immigrate such that in this case, the 

swarm is exchange  with an arbitrarily chosen particle. The death and immigration 

instrument attach some element of uncertainty that help prevent the algorithm 

from returning non-optimal solution but a universal best solution. The next section 

outlines MSO algorithm. 

3.1.2. Multi-Swarm Algorithm Pseudo-Code 

Multi-Swarm Algorithm (McCaffrey, 2016) is one type nature-inspired 

heuristic algorithm which presents strong robustness and the ability to find 

optimal solution.  The main steps of the algorithm are given below: 

 

 

for each swarm iteration 

   create particles at arbitrary locations 

end for 

 

whileas epoch < maximumEpochs iteration 

  for-every swarm iteration 

    for-every particle in swarm iteration 

was particle dead? 

      was particle immigrating? 

calculate new velocity with concentration on  

        current velocity, best particle location, 

        best swarm location, and 

        best overall location 

      adopt new velocity to renew location 

verify if new location is a new particle 

        best, or a new swarm best, or  

        a new universal best 

    end every swarm 

  end every particle 

end while 

return best universal location found 
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3.1.3. Bat Algorithm 

The Bat algorithm (BA), a meta-heuristic algorithm is stimulated by the acti-

vities of bats for global optimization. It principles was inspired and developed  

in 2010 by Xin-She Yang. This algorithm is a multi-agent approach stimulated  

by the echolocation conducts of  bats, with changing rates of pulse of emission 

and loudness, where a single pulse can last a little over thousandths of a second 

(ranging about 8–10 ms) (Altringham, 1996). Yet, the pulse has a continuous 

frequency which is more often than not in the range of 25–150 kHz which  

is equivalent to the wavelengths of 2–14 mm.  

Yang identified three key features of the micro-bat to illustrate the fundamental 

structure of BA. These important characteristics as used by Yang are identified as 

follows (Yang, 2010): 

I. Although greater numbers of species of bats make use of echolocation to 

hunt their prey, only a few fail to adopt this approach but may adopt another 

form of hunting technique. Conversely, the micro-bat is a renowned 

example of broadly using the echolocation technique. For this reason, the 

first characteristic is the behaviour of echolocation. 

I. The frequency to which micro-bat transmits a predetermined frequency 

𝑓𝑚𝑖𝑛with an inconsistent wavelength λ and the loudness 𝐴𝑜 to look for prey. 

II. Loudness by micro-bat can be regulated in several ways. Ideally, 

the loudness is believed to progress from an optimistic large value 𝐴𝑜 to 

𝐴𝑚𝑖𝑛, a minimum constant value.  
 

Yang’s method in simulations, make use of virtual bats in nature to identify the 

updated rules of their location xi and velocities 𝑣𝑖 in a D-dimensional search 

space. Fresh solutions 𝑥1
𝑡 and velocities 𝑣1

𝑡 at given time step t are obtained by 
 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 – 𝑓𝑚𝑖𝑛) β, 

𝑣1
𝑡 = 𝑣1

𝑡−1 + (𝑥1
𝑡 – 𝑥∗) 𝑓𝑖,              (11) 

calculate new velocity with concentration on  

        current velocity, best particle location, 

        best swarm location, and 

        best overall location 

 

adopt new velocity to renew location 

verify if new location is a new particle 

        best, or a new swarm best, or  

        a new universal best 

    end every swarm 

  end every particle 

end while 

return best universal location found 
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𝑥1
𝑡 = 𝑥1

𝑡−1 + 𝑣1
𝑡,   

where f is the frequency the bat use in hunting for its prey, with the suffixes, min 

and max, standing for the minimum and maximum value, and β ∈ [0, 1] represent 

the random vector obtained from a uniform distribution 𝑥∗, designate the present 

global near best solution which is obtained after evaluating all the results among 

all the n bats. A new solution for each bat is produced locally once a solution is 

chosen among the current best solutions, using random walk for the local search 

part. This is illustrated as: 
 

𝑥𝑛𝑒𝑤 =   𝑥𝑜𝑙𝑑 +  𝜀 𝐴𝑡           (12) 
 

where 𝜀∈ [−1, 1] = random number, 𝐴𝑡 = (𝐴𝑖
𝑡) represent the average loudness of 

every bat at the present time step.  

The process is iterative therefore in addition, 𝐴𝑖, the loudness and 𝑟𝑖the pulse 

emission rate are renewed accordingly as the iterations progresses. These formulas 

are illustrated in equation 13. 
 

𝐴1
𝑡−1 =  𝛼𝐴𝑖

𝑡 , 

 𝑟1
𝑡+1 =  𝑟𝑖

0[1 − exp(−𝛾𝑡)],       (13) 

Here α and 𝛾 are constants. For simplicity in Yang’s experiments, α = 𝛾 = 0.9 

(Tsai et al., 2012). Per the idealization and approximations techniques employed, 

a summary of the basic steps of the bat algorithm is explained in the pseudo-code 

(Zhou et al., 2014). 
 

 

Assume objective function f(x), x = [x1,x2,…,xd]T 

Initialize the bat population xi(I = 1, 2, …, n) and vi 

Identify pulse frequency fi at xi 

Initialise pulse rates ri and the loudness Ai 

While (t < Max number of iterations) 

Generate new solutions by adjusting frequency, 

and updating velocities and locations/solutions  

If (rand > ri)  

Select a solution among the best solutions  

Generate a local solution around the selected solution 

        end if 

Generate a new solution by flying randomly 

If (rand < Ai& f (xi) < f (x*)) 

Accept the new solutions 

Increase ri and reduce Ai 

end if 

grade the bats and find the recent best x* 

end while 

Post-process results and visualisation 

 

 



72 

4. SIMULATION AND EXPERIMENTAL RESULTS 

4.1. Parameters and Setting 

The experimental settings is executed in Microsoft Visual C# 2010 version 

10.0.3.319.1 RTMRel and carried out on a HP ProBook 4540s Computer with the 

processor of Intel(R) Core(TM) i3-3110M CPU at 2.40 GHz and 4096 GB 

memory.  The general control parameters for both algorithms are the size of popu-

lation and the number of maximum generation. The maximum numbers of cycles 

or generations used for the experiment is 1,000 with 6 dimensions (10, 15, 20, 25 

and 30 and 35) of population size 25. The initialisation range [min, max] for all 

test functions are set to its global specific values. 

Other specific control parameters and their values of the algorithms are 

presented in table 1. 
 
Tab. 1. Parameter settings of algorithms (own study) 

 

  

Multi Swarm Optimisation Bats Algorithm 

Parameter Setting Value/Range Parameter Setting Value/Range 

Number of swarms 5 Initial Pulse, 𝑟𝑖
0 [0, 1] 

Randomisation effect 

(r1, r2, r3) 
[0, 1] Initial loudness, 𝐴𝑖

0 [0.5, 2] 

inertia weight w 0.729 [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥) [0, 50] 

cognitive, c1 1.49445 Random number, ∈ [0, 1] 

social, c2 1.49445   

global weight, c3 0.3645   

Death 0.001   

Immigrate 0.005   
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4.2. Results and Findings 

Tab. 2. Results obtained by BA and MSO Algorithms on 𝒇𝟏–𝒇𝟔 

Function 
Algorithm 

Dim 

BA MSO 

Value 
Processing 

Time (ms) 
Value 

Processing 

Time (ms) 

Griewank  
𝑓1 

10 

15 

20 

25 

30 

35 

36.7378 

149.251 

159.262 

299.961 

265.519 

427.209 

24.7027 

27.6363 

25.5866 

28.2889 

30.7918 

30.3462 

0.06151 

0.02464 

0.01232 

0.00000 

0.00000 

0.00000 

411.6582 

560.5681 

690.3489 

858.6691 

995.7082 

1155.371 

Mean Best 222.99 27.89 0.0164 778.72 

Rastrigin 

𝑓2 

10 

15 

20 

25 

30 

35 

351.313 

514.270 

709.450 

798.425 

886.754 

1429.693 

22.999 

27.217 

29.992 

29.459 

30.810 

30.708 

0.00545 

3.97984 

11.9395 

6.96471 

17.9093 

37.8108 

348.5491 

487.8739 

628.4436 

764.1113 

899.4347 

1041.189 

Mean Best 781.65 28.53 13.102 695.06 

Ackley 

𝑓3 

10 

15 

20 

25 

30 

35 

18.9583 

17.3149 

19.5170 

20.2093 

19.9750 

20.0563 

16.3993 

28.6699 

27.4071 

28.9098 

31.7634 

32.1055 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

363.1926 

505.2514 

632.0096 

772.8162 

900.9023 

1109.397 

Mean Best 19.338 27.543 0 713.93 

Rosenbrock 
𝑓4 

10 

15 

20 

25 

30 

35 

26823760.1 

23429221.4 

71148367.85 

94167522.53 

131685159.98 

155353591.25 

21.0828 

26.007 

26.1592 

29.5329 

32.0499 

28.117 

0.03984 

0.44539 

0.28202 

7.76763 

19.95645 

25.03745 

291.2593 

401.9415 

513.104 

613.4289 

711.3804 

831.7191 

Mean Best 60464937.2 27.158 11.088 560.47 

Schwefel 

𝑓5 

10 

15 

20 

25 

30 

35 

-79.3260 

-98.2885 

-109.9045 

-128.1006 

-227.9366 

-254.4494 

24.1545 

23.1431 

27.9776 

23.5357 

30.6533 

34.9313 

-117.88 

-161.75 

-154.61 

-171.96 

-354.54 

-398.49 

388.2503 

549.3576 

702.773 

912.7342 

1019.856 

1183.956 

Mean Best -9.1676 27.399 -17984.54 792.82 

Michalewicz 

𝑓6 

10 

15 

20 

25 

30 

35 

-3.7174 

-4.4228 

-4.9680 

-7.6216 

-7.8105 

-8.9912 

25.4515 

24.2584 

26.8576 

27.1193 

30.9676 

35.9179 

-3.57858 

-3.96202 

-5.96101 

-6.46669 

-6.22626 

-8.39956 

536.9318 

756.5302 

990.6771 

1202.339 

1426.182 

1659.426 

Mean Best -6.2553 28.429 -5.7657 1095.3 
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Fig 8 and 9 illustrates a graphical representation of the mean best value and 

time of the performance of the algorithms. From table 1.0 Bats algorithms 

performance on difficult functions such as Griewank and Ackley is on the 

downside.Functions with flat outer region with a large hole at its center seem to 

have no effect on MSO. MSO performance on these functions indicates its ability 

to moving out of the local minimum in the search space and locating the global 

minima. That said, MSO can converge to the minimum of both functions as 

dimensions increases. On Rosenbrock function, 𝑓4, Bats algorithm returned very 

bad results which was far fetch from the global optima. Conversely MSO produce 

very good optimum solutions. 

With regards to functions with deep valley with parabola shape, although MSO 

did return much better results in dimensions 10 and 15, later results obtain were a 

little larger. Bats algorithm on the other hand demonstrates its inability to return a 

better result returning largely very insignificant values with a flip flop approach 

(peaks and valleys). BA deteriorates substantially in its performance on this 

function than any other. 

 

 

Fig. 8. Mean best value and time for f1–f3 by BA and MSO (own study) 
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Fig. 9. Mean best value and time for f5 and f6 by BA and MSOs (own study) 
 

 

From the computational experiment, 𝑓𝟓 and 𝑓𝟔 demonstrated better conver-

gence rate on both algorithms as they returned close to optimal solutions. As MSO 

outperforms BA at 𝑓𝟓, returning best results, BA on the other hand outperforms 

MSO at 𝑓𝟔. BA shows faster, better convergence rate and a demonstration on its 

effectiveness in testing optimisation problem than MSO. 

On the whole, BA appears to be better in terms of computation process speed 

rate. This may possibly be due to the outcome from producing completely 

different arbitrary numbers to be used in the generation procedures of the 

algorithm. MSO outperforms BA in five non-linear optimisation problems 

experimented by returning better, optimum and close to optimal values.  

The searching ability of groups of swarm is very effective for local optimisation 

thus, the MSO algorithm success in exhibiting better performance on optimising 

multivariable and multimodal functions. This proof indicates the powerful 

potential of MSO in solving non-linear optimization problems. 

5. CONCLUSION 

In this paper, a comparative study of the performance of population based 

algorithms and swarm intelligence was undertaken. The target is to compare  

the performance of BA and MSO algorithm in fine-tuning continuous 

unconstrained non linear optimisation problem. With the intention of demon-

strating the performance of both algorithms, they were exposed to six multi 

dimensional numerical multimodal benchmark functions. From the experimented 
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simulation results, the conclusion was that, the MSO algorithm out performs BA 

in returning optimal results although lags behind in processing time. MSO 

possessed the tendency to escape from the local minimum, so therefore can be 

used efficiently for multimodal and multivariable optimization. There are several 

gray areas which remain for future studies such as the exploration into the unique 

behaviour and characters of the bench mark functions on meta-heuristic 

optimisation algorithms and the effects of the parameters on the performance  

of the algorithms  
 

 

REFERENCES 

 

Altringham, J. D. (1996). Bats: Biology and Behaviour. Oxford University Press. 

Blum, Ch., Roli, A., & Sampels, M. (2008). Hybrid Metaheuristics. An Emerging Approach  

to Optimization. Springer. 

Chen, S., & Montgomery, J. (2011). Selection Strategies for Initial Positions and Initial Velocities 

in Multi-optima Particle Swarms. Gecco-2011: Proceedings of the 13th Annual Genetic and 

Evolutionary Computation Conference, 53-60. 

Ciurana, J., Arias, G., & Ozel, T. (2009). Neural Network Modeling and Particle Swarm Optimi-

zation (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13 

Steel. Materials and Manufacturing Processes, 24(3), 358-368. doi:10.1080/ 

10426910802679568 

Example Functions (single and multi-objective functions). Retrieved August, 2016, from 

http://www.geatbx.com/docu/fcnindex-01.html#P150_6749 

Friedman, J. H. (1994). An overview of predictive learning and function approximation.  

In V. Cherkassky, J. H. Friedman, & H. Wechsler (Eds.), Statistics to Neural Networks. 

Theory and Pattern Recognition Applications. NATO ASI Series F (pp. 1-61). Springer. 

Gal, T., & Nedoma, J. (1972). Multiparametric Linear Programming. Management Science Series 

a-Theory, 18(7), 406-422. doi:10.1287/mnsc.18.7.406 

Madić, М., Marković, D., & Radovanović, M. (2013). Comparison of meta-heuristic algorithms  

for solving machining optimization problems. Mechanical Engineering, 11(1), 29-44. 

McCaffrey, J. D. (2016, August). Multi-Swarm Optimization with C#. Retrieved from  

https://jamesmccaffrey.wordpress.com/2013/09/16/multi-swarm-optimization-with-c 

Pal, S. K., Rai, C. S., & Singh, P. A. (2012). Comparative Study of Firefly Algorithm and Particle 

Swarm Optimization for Noisy Non-Linear Optimization Problems. I.J. Intelligent Systems 

and Applications, 10, 50-57. doi: 10.5815/ijisa.2012.10.06 

Pansare, V. B., & Kavade, M. V. (2012). Optimization of cutting parameters in multipass turning 

operation using ant colony algorithm. International Journal of Engineering Science & 

Advanced Technology, 2(4), 955-960. 

Rao, R. V., Pawar, P. J., & Davim, J. P. (2010). Optimisation of process parameters of mechanical 

type advanced machining processes using a simulated annealing algorithm. International 

Journal of Materials & Product Technology, 37(1-2), 83-101. 

Samanta, S., & Chakraborty, S. (2011). Parametric optimization of some non-traditional machining 

processes using artificial bee colony algorithm. Engineering Applications of Artificial 

Intelligence, 24(6), 946-957. doi:10.1016/j.engappai.2011.03.009 

Tsai, P. W., Pan, J. S., Liao, B. Y., Tsai, M. J., & Istanda, V. (2012). Bat Algorithm Inspired 

Algorithm for Solving Numerical Optimization Problems. Applied Mechanics and Materials, 

148-149, 134-137. doi:10.4028/www.scientific.net/AMM.148-149.134 

Virtual Library of Simulation Experiments: Test Functions and Datasets. Retrieved August, 2016, 

from https://www.sfu.ca/~ssurjano/optimization.html 



77 

Yang, X. S. (2008). Nature-Inspired Metaheuristic Algorithms. Luniver Press. 

Yang, X. S. (2010). A new metaheuristic Bat-inspired algorithm. In J. R. González, D. A. Pelta,  

C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for 

Optimization (NICSO 2010) (pp. 65-74). Springer. 

Yuan, B. (2016, August). A Brief Introduction to Global Optimization. Retrieved from  

http://boyuan.global-optimization.com/optimization.htm 

Zain, A. M., Haron, H., & Sharif, S. (2010). Application of GA to optimize cutting conditions for 

minimizing surface roughness in end milling machining process. Expert Systems with 

Applications, 37(6), 4650-4659. doi:10.1016/j.eswa.2009.12.043 

Zhang, J. Z., & Ding, X. M. (2011). A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm 

Optimization. Engineering Applications of Artificial Intelligence, 24(6), 958-967. 

doi:10.1016/j.engappai.2011.05.010 

Zhou, Y. Q., Xie, J., Li, L. L., & Ma, M. Z. (2014). Cloud Model Bat Algorithm. The Scientific 

World Journal, 2014. doi:10.1155/2014/237102 

 


