PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decoding Financial Data: Machine Learning Approach to Predict Trading Actions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (19 ; 08-11.09.2024 ; Belgrade, Serbia)
Języki publikacji
EN
Abstrakty
EN
This paper presents a study on predicting stock trends using a dataset consisting of key financial indicators from 300 S&P 500 companies over a decade. Each company is characterized by 58 financial indicators along with their 1-year changes, offering valuable insights into potential trends. The objective is to develop predictive models to accurately forecast trading actions (buy, sell, hold) based on fundamental financial data. Three machine learning models---Random Forest, CatBoost, and XGBoost classifiers---were trained, employing two distinct voting mechanisms. The first voting mechanism was utilized in the competition, while the second was developed post-competition after the test labels were released. Notably, the second model was trained solely on the training data. The results demonstrate that both voting mechanisms effectively capture trends, as reflected by the average error cost measure, evaluated using the provided error cost matrix.
Rocznik
Tom
Strony
739--744
Opis fizyczny
Bibliogr. 7 poz., rys., tab., wykr.
Twórcy
  • TU Dortmund University Department of Statistics, Data Science Dortmund, Germany
  • TU Dortmund University Department of Statistics, Data Science Dortmund, Germany
Bibliografia
  • 1. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: Unbiased boosting with categorical features,” Advances in Neural Information Processing Systems, vol. 31, pp. 6638–6648, 2018.
  • 2. S. Van Buuren and K. Groothuis-Oudshoorn, “Mice: Multivariate imputation by chained equations in r,” Journal of statistical software, vol. 45, no. 3, 2011.
  • 3. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.
  • 4. A. Liaw and M. Wiener, “Classification and regression by randomforest,” R news, vol. 2, no. 3, pp. 18–22, 2002.
  • 5. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016, pp. 785–794.
  • 6. K. Gurney, An introduction to neural networks. CRC press, 1997.
  • 7. L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, 2004.
Uwagi
Track: Data Mining Competition
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d04c3ca2-144d-4c61-8446-99e27bb633fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.