PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of pressure drop during refrigerant condensation in pipe minichannels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.
Rocznik
Strony
15–--28
Opis fizyczny
Bibliogr. 27 poz., rys., wz.
Twórcy
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15, 75-900 Koszalin
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15, 75-900 Koszalin
Bibliografia
  • [1] Akers W., Deans O.K., Crosser O.K.: Condensation heat transfer within horizontal tubes. Chem. Eng. Progr. 54(1958), 89-90.
  • [2] Akers W., Deans O.K., Crosser O.K.: Condensation heat transfer within horizontal tubes. Chemical Engineering Progress Symp. 55(1959), 171-176.
  • [3] Bohdal T., Charun H., Sikora M.: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int. J. Heat Mass Tran. 54(2011), 1963-1974.
  • [4] Bohdal T.: Investigations of environmentally friendly refrigerants phase changes in minichannels. Annual Set the Environment Protection 15(2013), 107-126.
  • [5] Bohdal T., Charun H., Sikora M.: Empirical study of heterogeneous refrigerant condensation in pipe minichannels. Int. J. Refrig. 59(2015), 210-223.
  • [6] Bohdal T., Widomska K., Sikora M.: The analysis of thermal and flow characteristics of the condensation of refrigerant zeotropic mixtures in minichannels. Arch. Thermodyn. 37(2016), 2, 41-69.
  • [7] Cavallini A., Del Col D., Matkovic M., Rossetto L.: Frictional pressure drop during vapour-liquid flow in minichannels: Modelling and experimental evaluation. Int. J. Heat Fluid Fl. 30(2009), 131-139.
  • [8] Cavallini A., Zecchin R.: A dimensionless correlation for heat transfer in forced convection condensation. In: Proc. 6th Int. Heat Transfer Conf., Tokyo, 3(1974), 309-313.
  • [9] Dobson M.K., Chato J.C.: Condensation in smooth horizontal tubes. J. Heat Trans-T ASME 120(1998), 1, 193-213.
  • [10] Friedel L.: Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Ispra 1987, Paper 2.
  • [11] Kharangate C. R., Mudawar I.: Review of computational studies on boiling and condensation. Int. J. Heat Mass Tran. 108(2017), 1164-1196.
  • [12] Lee H.J., Lee S.Y.: Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int. J. Multiphas. Flow 27(2001), 783-796.
  • [13] Lockhart R.W.: Martinelli R.C.: Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45(1949), 1, 39-48.
  • [14] Mikielewicz J.: Domestic combined micro heat and power plant. Annual Set of the Environment Protection 11(2009), 25-38.
  • [15] Mikielewicz J., Mikielewicz D.: The dynamics of heat exchangers and instabilities in ORC circulation. Annual Set of the Environment Protection 13(2011), 425-440.
  • [16] Mikielewicz D., Wajs J., Andrzejczyk R., Klugmann M.: Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int. J. Refrig. 68(2016), 226-241.
  • [17] Mishima K., Hibiki T.: Some characteristics af air-water flow in small diameter vertical tubes. Int. J. Multiphas. Flow 22(1996), 703-712.
  • [18] Moser K., Webb R.L., Na B.: A new equivalent Reynolds number model for condensation in smooth tubes. J. Heat Trans.-T ASME 120(1998), 410-417.
  • [19] Shah M.M.: A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Tran. 22(1979), 547-556.
  • [20] Tandon T.N., Varrna H.K., Gupta C.P.: New flow regimes map for condensation inside horizontal tubes. J. Heat Trans.-T ASME 104(1982), 4, 763-768.
  • [21] Tang L.: Empirical Study of New Refrigerant Flow Condensation Inside Horizontal Smooth and Micro-Fin Tubes. University of Maryland, College Park, 1997.
  • [22] Thome J.R., El Hajal J., Cavallini A.: Condensation in horizontal tubes, part 1: two – phase flow pattern map. Int. J. Heat Mass Tran. 46(2003), 18, 3349-3363.
  • [23] Thome J.R., El Hajal J., Cavallini A.: Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. Int. J. Heat Mass Tran. 46(2003), 18, 3365-3387.
  • [24] Tran T.N., Chyu M.C., Wambsganss M.W., France D.M.: Two-phase pressure drop of refrigerants during flow boiling in small channels. Int. J. Multiphas. Flow 26(2000), 11, 1739-1754.
  • [25] Wilson M.J., Newell T.A., Chato J.C., Ferreira C.A.: Refrigerant charge, pressure drop and condensation heat transfer in flattened tubes. Int. J. Refrig. 26(2003), 4, 442-451.
  • [26] Zhang W., Hibiki T., Mishima K.: Correlations of two-phase frictional pressure drop and void fraction in mini-channel. Int. J. Heat Mass Tran. 53(2010), 453-465.
  • [27] Zhang M., Webb R.L.: Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp. Therm. Fluid Sci. 25(2001), 3-4, 131-139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d04bcd54-bbdc-42d0-b622-e16ab6e3a98b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.