PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on bubble characteristics of flotation column in hematite reverse cationic flotation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the self-designed flotation column simulation system, the foaming characteristics of the micro-bubble countercurrent contact flotation column used in the hematite cation column flotation process are systematically studied. The objective of this study is to investigate the bubble generation by a bubble generator in the flotation column. The bubble image was obtained by the high-speed camera recorder, and the bubble diameter was calculated and analyzed by image processing software. The distribution characteristics of the bubble size under different aeration conditions and with different reagent concentrations were investigated. The results show that as the aeration increases, the average diameter bubbles increases, the bubble size distribution changes from narrow to wide, and the number of small bubbles decreases. The cationic collector GE-609 can change the bubble shape. As the concentration increases, the bubble shape gradually changes from an irregular shape to a standard spherical shape. When the concentration of GE-609 exceeds 2.5 mg/dm3, the average circularity C of the bubbles in the bubble group stabilizes at 1, and the increase in concentration no longer changes the bubble shape. GE-609 also has an efficient foaming effect, as the concentration increases, the bubble diameter distribution changes significantly, the proportion of small bubbles increases, and the proportion of large bubbles decreases significantly. When the critical concentration is exceeded, the bubble diameter distribution probability density peak width no longer changes significantly. Compared with the two types of alcohol foaming agents, GE-609 produces a bubble Sauter diameter close to that of 2-octanol and slightly lower than terpineol.
Rocznik
Strony
64--75
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • College of Mine engineering, North China University of Science and Technology, Tangshan 063009, China
  • Mining Development and Safety Technology Key Lab of Hebei Province, Tangshan 063009, China
autor
  • College of Mine engineering, North China University of Science and Technology, Tangshan 063009, China
Bibliografia
  • ANAGBO, P.E., BRIMACOMBE, J. K., 1990. Plume characteristics and liquid circulation in gas injection through a porous plug. Metallurgical Transactions B. 21, 04, 637-648.
  • BRITTLE, S., DESAI, P., N.G., W.C., DUNBAR. A., HOWELL, R., TESARR, V., ZIMMERMAN, W.B., 2015. Minimising micro-bubble size through oscillation frequency control. Chemical Engineering Research & Design. 104, 357–366.
  • DIJKHUIZEN, W., HENGEL, E., DEEN, N.G., 2005. Numerical investigation of closures for interface forces acting on single air bubbles in water using volume of fluid and front tracking models. Chemical Engineering Science. 60, 22, 6169-6175.
  • ESKANLOU, A., KHALESI, M.R., ABDOLLAHY, M., 2018. Bubble loading profiles in a flotation column. Physicochemical Problems of Mineral Processing. 54, 2, 355-362.
  • GULDEN, S. J., RIEDELE, C., ROLLIE, S., KOPF, M.-H., NIRSCHL, H., 2018. Online bubble size analysis in micro flotation. Chemical Engineering Science.185, 168-181.
  • KRACHT, W., FINICH, J. A., 2010. Effect of frother on initial bubble shape and velocity. International Journal of Mineral Processing. 94, 03-04, 115-120.
  • KRACHT, W., MORAGA, C., 2016. Acoustic measurement of the bubble Sauter mean diameter d32. Minerals Engineering. 98, 122-126.
  • KRACHT, W., REBOLLEDO, H., 2013. Study of the local critical coalescence concentration (l-CCC) of alcohols and salts at bubble formation in two-phase systems. Minerals Engineering. 50, 77-82.
  • KULKARNI, A.A., JYESHTHARAJ, J.B., 2005. Bubble formation and bubble rise velocity in gas-liquid systems: a review. Industrial and Engineering Chemistry Research. 44, 16, 5873-5931.
  • MARIAN, B., ANNA, M., 2012. The distribution of air bubble size in the pneumo-mechanical flotation machine. Archives of Mining Sciences. 57, 03, 729-740.
  • PARMAR, R., MAJUMDER, S.K., 2013. Micro-bubble generation and micro-bubble-aided transport process intensificationa state-of-the-art report. Chemical Engineering. 64, 79-97.
  • QUINN, J.J., SOVECHLES, J.M., FINICH, J.A., 2014. Critical coalescence concentration of inorganic salt solutions. Minerals Engineering. 58, 1-6.
  • RAFIEI, A.A., ROBBERTZE, M., FINICH, J. A., 2011. Gas holdup and single bubble velocity profile. International Journal of Mineral Processing. 98, 89-93.
  • RITESH, P., SUBRATA, K.M., ANUGRAH, S., 2018. Flotation technique: Its mechanisms and design parameters. Chemical Engineering and Processing-Process Intensification. 127, 249-270.
  • SONG, Z.X., HAN, J.K., WANG, W.Z., ZHANG, R.H., LI, X., 2019. Development and application status of flotation column technology. Metal Mine. 6, 20-26.
  • WANG, W.Z., LIU, Z.W., LAI, Y.B., 2017. Experimental Study on cationic reverse flotation by flotation column of a magnetite and hematite mixed iron ore. Multipurpose Utilization of Mineral Resources. 6, 64-67.
  • WIBAWA, E. J., ARIF, W., OKTO, D., 2019. Hydrodynamic characteristics of the micro-bubble dissolution in liquid using orifice type micro-bubble generator. Chemical Engineering Research and Design. 141, 01, 436-448.
  • WU, M.M., 2002. Experimental studies on the shape and path of small air bubbles rising in clean water. Physics of Fluids. 14, 07, 49-52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d04aca68-85fa-4573-b84c-a2237269d194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.