PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The f.c.c. Crystals of Hard Spheres with an Array of [001]-Nanochannel Inclusions Filled by the Simplest Hard Sphere Molecules

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the systems composed of particles interacting with hard potential are investigated. These systems feature certain modifications to the crystal structure – selected particles are replaced with ones that differ slightly in their diameters. Such modifications, which can be thought of as “inclusions”, concern particles located in cylindrical nanochannels, oriented in [001] direction. In this study, for the first time, additional constrains have been imposed on the particles forming the inclusions. Namely, the replaced spheres have been randomly grouped into neighbouring pairs which were connected to form simple, di-atomic molecules. The results have been compared with previously investigated systems with similar inclusions but without the connections, i.e. filled only by spheres. The comparison of elastic properties between these systems is presented. It is shown that inclusions filled with dimers have different impact on the values of elastic compliances. It has been demonstrated that by introducing a small number of molecules made of spheres whose diameters differ from the rest of the particles forming the crystal, one is able to modify the hardness and shear resistance of the f.c.c. crystal without changing the Poisson’s ratio (with respect to the analogous system without additional constrains imposed on the inclusion particles).
Twórcy
  • Polish Academy of Sciences Institute of Molecular Physics M. Smoluchowskiego 17, 60-179 Poznań, Poland
Bibliografia
  • [1] K.E. Evans, Auxetic polymers: a new range of materials, Endeavour 15, 170–174 (1991).
  • [2] L.D. Landau, E.M. Lifshitz, Theory of Elasticity. London, UK: Pergamon Press (1986).
  • [3] R.S. Lakes, Foam structures with a negative Poisson’s ratio, Science 235, 1038–1040 (1987).
  • [4] K.W. Wojciechowski, Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers, Mol. Phys. 61, 1247–1258 (1987).
  • [5] K.W. Wojciechowski, Two-dimensional isotropic model with a negative Poisson ratio, Phys. Lett. A 137, 60–64 (1989).
  • [6] T. Allen, T. Hewage, C. Newton-Mann, W. Wang, O. Duncan, A. Alderson, Fabrication of auxetic foam sheets for sports applications, Status Solidi B-Basic Solid State Phys. 254(12), 1700596 (2017).
  • [7] H.C. Cheng, F. Scarpa, T.H. Panzera, I. Farrow, H.-X. Peng, Shear stiffness and energy absorption of auxetic open cell foams as sandwich cores, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800411 (2019).
  • [8] O. Duncan, F. Clegg, A. Essa, A.M.T. Bell, L. Foster, T. Allen, A. Alderson, Effects of heat exposure and volumetric compression on Poisson’s ratios, Young’s moduli, and polymeric composition during thermo-mechanical conversion of auxetic open cell polyurethane foam, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800393 (2019).
  • [9] K. Alderson, S. Nazaré, A. Alderson, Large-scale extrusion of auxetic polypropylene fibre, Phys. Status Solidi B-Basic Solid State Phys. 253(7), 1279–1287 (2016).
  • [10] P. Verma, C.B. He, A.C. Griffin, Implications for auxetic response in liquid crystalline polymers: X-ray scattering and space-filling molecular modeling, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 2000261 (2020).
  • [11] N. Novak, M. Vesenjak, G. Kennedy, N. Thadhani, Z. Ren, Response of chiral auxetic composite sandwich panel to fragment simulating projectile impact, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 1900099 (2020).
  • [12] Y.C. Wang, M.W. Shen, S.M. Liao, Microstructural effects on the Poisson’s ratio of star-shaped two-dimensional systems, Phys. Status Solidi B-Basic Solid State Phys. 254(12), 1700024 (2017).
  • [13] Z. Rueger, C.S. Ha, R.S. Lakes, Flexible cube tilt lattice with anisotropic cosserat effects and negative Poisson’s ratio, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800512 (2019).
  • [14] P.-S. Farrugia, R. Gatt, J.N. Grima, A novel three-dimensional anti-tetrachiral honeycomb, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800473 (2019).
  • [15] J. Li, C.S. Ha, R.S. Lakes, Observation of squeeze-twist coupling in a chiral 3d isotropic lattice, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 1900140 (2020).
  • [16] D. Photiou, S. Avraam, F. Sillani, F. Verga, O. Jay, L. Papadakis, Experimental and numerical analysis of 3d printed polymer tetra-petal auxetic structures under compression, Applied Sciences 11(21), 10362 (2021).
  • [17] S. Bao, X. Ren, Y.J. Qi, H.R. Li, D. Han, W. Li, C. Luo, Z.Z. Song, Quasi-static mechanical properties of a modified auxetic re-entrant honeycomb metamaterial, Phys. Status Solidi B-Basic Solid State Phys. 259(12), 2200270 (2022).
  • [18] H. Sun, H. Zhou, J. Zhang, L. Wang, T. Wang, Multiple crashworthiness evaluation of double-v npr filled square tube under axial impact, Phys. Status Solidi B-Basic Solid State Phys. 259(12), 2200388 (2022).
  • [19] F.L. Malfa, S. Puce, F. Rizzi, M.D. Vittorio, A flexible carbon nanotubes-based auxetic sponge electrode for strain sensors, Nanomaterials 10(12), 2365 (2020).
  • [20] D. Li, J. Yin, L. Dong, Numerical analysis of a two-dimensional open cell topology with tunable Poisson’s ratio from positive to negative, Phys. Status Solidi-Rapid Res. Lett. 12(3), 1700374 (2018).
  • [21] F. Usta, F. Scarpa, H.S. Turkmen, P. Johnson, A.W. Perriman, Y.Y. Chen, Multiphase lattice metamaterials with enhanced mechanical performance, Smart Mater. Struct. 30(2), 025014 (2021).
  • [22] K.K. Dudek, R. Gatt, M.R. Dudek, J.N. Grima, Controllable hierarchical mechanical metamaterials guided by the hinge design, Materials 14(4), 758 (2021).
  • [23] T. DeValk, R. Lakes, Poisson’s ratio and modulus of gyroid lattices, Phys. Status Solidi B-Basic Solid State Phys. 258(12), 2100081 (2021).
  • [24] A.A. Pozniak, K.W. Wojciechowski, J.N. Grima, L. Mizzi, Planar auxeticity from elliptic inclusions, Composites Part B 94, 379–388 (2016).
  • [25] L. Mizzi, J.N. Grima, R. Gatt, D. Attard, Analysis of the deformation behavior and mechanical properties of slit-perforated auxetic metamaterials, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800153 (2019).
  • [26] K.K. Dudek, J.A.I. Martinez, G. Ulliac, M. Kadic, Microscale auxetic hierarchical mechanical metamaterials for shape morphing, Advanced Materials 34(14), 2110115 (2022).
  • [27] P. Verma, K.B. Wagner, A.C. Griffin, M.L. Shofner, Reversibility of out-of-plane auxetic response in needle-punched nonwovens, Phys. Status Solidi B-Basic Solid State Phys. 259(12), 2200387 (2022).
  • [28] A. Zulifqar, H. Hu, Development of bi-stretch auxetic woven fabrics based on re-entrant hexagonal geometry, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800172 (2019).
  • [29] N. Jiang, H. Hu, Auxetic yarn made with circular braiding technology, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800168 (2019).
  • [30] A. Zulifqar, T. Hua, H. Hu, Single- and double-layered bistretch auxetic woven fabrics made of nonauxetic yarns based on foldable geometries, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 1900156 (2020).
  • [31] D. Tahir, M. Zhang, H. Hu, Auxetic materials for personal protection: A review, Phys. Status Solidi B-Basic Solid State Phys. 259(12), 2200324 (2022).
  • [32] W.G. Hoover, C.G. Hoover, Searching for auxetics with DYNA3D and ParaDyn, Phys. Status Solidi B-Basic Solid State Phys. 242(3), 585–594 (2005).
  • [33] K.V. Tretiakov, K.W. Wojciechowski, Poisson’s ratio of the fcc hard sphere crystal at high densities, J. Chem. Phys. 123, 074509 (2005).
  • [34] I. Karachevtseva, E. Pasternak, A.V. Dyskin, Negative stiffness produced by rotation of non-spherical particles and its effect on frictional sliding, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800003 (2019).
  • [35] Y.-C. Wang, H.-W. Lai, M.-W. Shen, Effects of cracks on anomalous mechanical behavior and energy dissipation of negative-stiffness plates, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800489 (2019).
  • [36] T.-C. Lim, Negative environmental expansion for interconnected array of rings and sliding rods, Phys. Status Solidi B-Basic Solid State Phys. 256(1), 1800032 (2019).
  • [37] T.-C. Lim, Maximum stresses in rectangular auxetic membranes, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 2000300 (2020).
  • [38] S. Czarnecki T. Lukasiak, Recovery of the auxetic microstructures appearing in the least compliant continuum two-dimensional bodies, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 1900676 (2020).
  • [39] Y.-C. Wang, T.-W. Ko, X. Ren, Effective mechanical responses of a class of 2d chiral materials, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 2000277 (2020).
  • [40] Y.-C. Wang, H.-W. Lai, J. X. Ren, Enhanced auxetic and viscoelastic properties of filled reentrant honeycomb, Phys. Status Solidi B-Basic Solid State Phys. 257(10), 1900184 (2020).
  • [41] V.A. Gorodtsov, M.A. Volkov, D.S. Lisovenko, Out-of-plane tension of thin two-layered plates of cubic crystals, Phys. Status Solidi B-Basic Solid State Phys. 258(12), 2100184 (2021).
  • [42] E.A. Korznikova, K. Zhou, L.K. Galiakhmetova, E.G. Soboleva, A.A. Kudreyko, S.V. Dmitriev, Partial auxeticity of laterally compressed carbon nanotube bundles, Phys. Status Solidi – Rapid Research Letters 16(1), 2100189 (2022).
  • [43] K.V. Tretiakov, K.W. Wojciechowski, Auxeticity and its pressure dependence for strongly anisotropic hard cyclic tetramers, Phys. Status Solidi-Rapid Res. Lett. 16(12), 2200288 (2022).
  • [44] T.-C. Lim, An auxetic metamaterial based on rotating and non-rotating rigid units inspired by an aztec geometrical pattern, Phys. Status Solidi B-Basic Solid State Phys. 259(12), 2200385 (2022).
  • [45] R.S. Lakes, B. Huey, K. Goyal, Extended Poisson’s ratio range in chiral isotropic elastic materials, Phys. Status Solidi B-Basic Solid State Phys. 259(12), 2200336 (2022).
  • [46] J.N. Grima-Cornish, D. Attard, L. Vella-Z˙ arb, J.N. Grima, K.E. Evans, Boron arsenate scaled-up: An enhanced nano-mimicking mechanical metamaterial, Phys. Status Solidi B-Basic Solid State Phys. 259(12), 2200368 (2022).
  • [47] R.H. Baughman, J.M. Shacklette, A.A. Zakhidov, S. Stafstrom, Negative Poisson’s ratios as a common feature of cubic metals, Nature 392, 362–365 (1998).
  • [48] A.C. Bran´ka, D.M. Heyes, K.W. Wojciechowski, Auxeticity of cubic materials under pressure, Phys. Status Solidi B-Basic Solid State Phys. 248, 96–104 (2011).
  • [49] J.W. Narojczyk, K.W. Wojciechowski, K.V. Tretiakov, J. Smardzewski, F. Scarpa, M. Piglowski, M. Kowalik, A.R. Imre, M. Bilski, Auxetic properties of a f.c.c. crystal of hard spheres with an array of [001]-nanochannels filled by hard spheres of another diameter, Phys. Status Solidi B-Basic Solid State Phys. 256, 1800611 (2019).
  • [50] K.W. Wojciechowski, K.V. Tretiakov, M. Kowalik, Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions, Phys. Rev. E 67, 036121 (2003).
  • [51] D. Frenkel, Order through entropy, Nature Materials 14, 9–12 (2015).
  • [52] K.V. Tretiakov, K.W. Wojciechowski, Auxetic, partially auxetic, and nonauxetic behaviour in 2D crystals of hard cyclic tetramers, Phys. Status Solidi-Rapid Res. Lett. 14, 2000198 (2020).
  • [53] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic Press, Amsterdam, The Netherlands (2006).
  • [54] J.W. Narojczyk, K.V. Tretiakov, K.W. Wojciechowski, Partially auxetic properties of face-centered cubic hard-sphere crystals with nanochannels of different sizes, parallel to [001]-direction and filled by other hard spheres, Phys. Status Solidi B-Basic Solid State Phys. 259(6), 2200006 (2022).
  • [55] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52, 7182–7190 (1981).
  • [56] M. Parrinello, A. Rahman, Strain fluctuations and elastic constants, J. Chem. Phys. 76, 2662–2666 (1982).
  • [57] K.W. Wojciechowski, A.C. Bran´ka, Negative Poisson ratio in a two-dimensional isotropic solid, Phys. Rev. A 40 7222–7225 (1989).
  • [58] S.P. Tokmakova, Stereographic projections of Poisson’s ratio in auxetic crystals, Phys. Status Solidi B-Basic Solid State Phys. 242(3), 721–729 (2005).
  • [59] J.F. Nye, Physical Properties of Crystalls, Their Representaion by Tensors and Matrices, Oxford, UK: Clarendon Press (1957).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d03f9326-8223-45d5-a37a-675dd2971b12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.