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Abstract. Using analytical methods we obtain the integral representation of a two-parameter
Feller semigroup on a closed interval [ry, ;] corresponding to such a diffusion phenomenon
that sticking, partial reflection, absorption and jump phenomena occur at the endpoints
11,7, and at some interior point r € (ry,13).
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Introduction

Let C(D) be the Banach space of all real-valued continuous functions on a closed
interval D = [ry,73]. Denote by D;, i = 1,2, the two intervals (r1,7) and (7,73),
respectively, where —oo <1y <7 <71, < 0 and by ¢; the restriction of any func-
tion ¢ defined on D to the closure D;.

Assume that the inhomogeneous diffusion process is given on D;, i = 1,2, and
it is generated by the second-order differential operator Agi), s € [0,T] (T > 0 fixed),
with the domain of definition C2(D;):

d?pi(x)
dx?
where the diffusion coefficient b;(s,x) and the drift coefficient a;(s,x) satisfy

the conditions:
1) there exist the constants b and B such that 0 < b < b;(s,x) < B for all

(s,x) € [0,T] X D;;
2) foralls,s € [0,T], x,x € D; the next inequalities hold:

de;(x)

ADpy(x) = 5 by(s, %) fals,— =, =12,

a

Ibi(5,2) = bi(s" x)| < ¢ (Is = s'[2 + |x = x'|%),
a

la;(s,x) —a;(s",x")| < c (|s —s'|2 + |x — x’|“),

where ¢ and «a are the positive constants, 0 < a < 1.
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Define the differential operator A5, s € [0, T], as follows:

9(A) = {p € C(D): g €9 (4) for i =12, 4P p(r) = 4P (1)},
APy (x), x €Dy, (1)

Asp(x) = { _
s A§2)<p2(x), x €D,.

Consider also the conjugation operator Lg and the two boundary operators L( )
22) of Feller-Wentzell defined at points r, 1y, 75, respectively,

Lso(r) = a(s)Asp(r) + Ch(S)Q q2(s) ——— ( +) +y(s)e(r) +

+ j [so(r)—cp(y)]u(s,dw,
D,UD,

w(J

LP o) = 0,()AP (1) + (1) ipi(s) +yi()p(r) +

+ [1o0d - p0Imcs, i 12
D;
where:
a) the functions o(s), 0;(s), i = 1,2, are positive and Holder continuous with
exponent % (a is the constant from 2)) on [0, T];

b) the functions q;(s), q,(s), y(s), pi(s), vi(s) are nonnegative and continuous
on [0, T];

¢) for a fixed s, u(s,”) and m;(s,"), i = 1,2, are the nonnegative measures on
D; U D, and D;, respectively, such that u(s,D; U D,) > 0, m;(s,D;) > 0 and
forall f € C (5) the integrals

f |y = FIf OYuGs dy), f |y = Rl dy)
J

D,UD,

exist and are Holder continuous with exponent % on [0,T] as functions of

variable s.
It is known (see [1-3]) that the conjugation condition and the boundary condi-
tions

L) =0, LPp@)=0 i=12 @)

restrict Ag to the infinitesimal generator of some Feller semigroup in the space of
continuous functions. Such a semigroup is constructed in the present paper. Thus,
we are interested in the following problem:
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Problem. Construct the two-parameter Feller semigroup Tg;, 0 < s <t < T, on D
whose infinitesimal generator is the restriction of A in (1) to the set of all func-
tions ¢ € 9(4;) satisfying the conjugation condition and the boundary conditions
of Feller-Wentzell in (2).

This problem is often called the problem of pasting together two one-dimensional
diffusion processes (see [4-8]). A process that is a result of pasting together

two diffusions generated by Agl) and Agz), respectively, coincides with them in
Dy = (ry,7) and D, = (r,1,) and its behaviour at each point r, 1y, r, is determined
by the corresponding condition in (2). The coefficients o, g;, y and the measure y
are supposed to correspond to the sticking phenomenon, the partial reflection
phenomenon, the absorption phenomenon and the jump phenomenon, respectively
(see [9, 10]).

The study of the problem is performed by analytical methods. With such an
approach the question on existence and construction of the operator family describ-
ing the required process in fact is being reduced to the investigation of the corre-
sponding problem of conjugation for a linear parabolic equation of the second
order with variable coefficients, discontinuous at the point r. This problem is to
find the function u(s, x, t) = Tg@(x) satisfying the following conditions:

W+Agi)u(s,x,t)=0, 0<s<t<T, x€D, i=12, 3)
lsiTIrtlu (s,x,t) = p(x), x€D, 4)

u(s,r—t) =u(s,r+,t), 0<s<t<T, %)
Lou(s,r,t) =0, 0<s<t<T, 6)

LPu(s,r,t) =0, 0<s<t<T, i=12 (7)

If ¢ € 9(Ay), it is clear that the desired function T, ¢ is to satisfy the equation (3)
and the “initial” condition (4). The condition (5) is the consequence of the Feller
property of the desired semigroup Tg. Since T € 9(4g) when ¢ € 9(4y),
the boundary conditions (6) and (7) are also to be satisfied. Taking into account
that the semigroup Ty, is to be defined in C(D), we shall solve the problem (3)-(7)
under the assumption that ¢ € C(D).

The classical solvability of the problem (3)-(7) is established by the boundary
integral equations method with the use of the ordinary fundamental solution of
equation (3) and associated parabolic potentials. Application of this method per-
mits us to obtain the integral representation of the solution of the problem (3)-(7),
which can be useful in studying additional properties of the constructed process
(see [5, 6]).

It is necessary to note that in the present paper we generalize the result obtained
in [6] where the similar problem was analyzed in case two inhomogeneous
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diffusion processes are given in D; = {x € R: (—1)ix > 0}, i = 1,2, with general
Feller-Wentzell type conjugation condition imposed at the beginning. In [7] the
problem (3)-(7) was solved in a special case ¢ = g; = g, = 0 and in [8] it was
solved in case = 1, gy = g, = 0. We should also mention works [11, 12], where
the related problems were studied by the methods of stochastic analysis.

1. Preliminaries

Without loss of generality we may suppose that the coefficients a;(s,x) and
b;(s,x) in (3) are defined on [0,T] X R and the conditions 1), 2) hold for all
(s,x) € [0,T] x R. We may also suppose that the function ¢ in (4) belongs to
Cp(R), where Cp(R) is the Banach space of real-valued bounded continuous func-
tions on R with norm

I @ = sup|@(x)l.
xeR

Denote by G;(s, x,t,y), i = 1,2, the fundamental solution of the equation (3) in
[0,T] X R (its existence is assured by 1), 2)). Recall that the function G; is non-
negative, continuously differentiable with respect to s, twice continuously differen-
tiable with respect to x and can be represented as (see [13-15])

Gi(s,x,t,y) = Zi(s,x,t,y) + Z;(s,x,t,y), (8
where
1 N2
ZiGs, %, 6,) = [21bi (6, 9) (¢ = )] Zexp {— %}

and the function Z; satisfies the inequality

_1+2r+p-a (y — x)z
|DIDYZ{(s,x,t,y)| < c(t —s) 2 exp {_hT} 9)
forall0 <s <t <T, x,y €R, where r and p are the nonnegative integers so that
2r + p < 2; DI is the partial derivative with respect to s of order r; DY is the par-
tial derivative with respect to x of order p;c, h are positive constants'; « is the
constant in 2). In addition,

» _1+2r+p (y — x)?
|DSTDxGL-(s,x, t,y)| <c(t—s) 2 exp —h? ) (10)

where 0 < s<t<T, x,yER, 2r+p < 2.

! We will subsequently denote various positive constants by the same symbol ¢ (or h).
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Given fundamental solution G;, we define the parabolic potentials that will be
used to solve the problem (3)-(7), namely the Poisson potential

Ui (5,7, £) = f G, (5, %6, )0 () dy,
R

and the simple-layer potentials
t
uj1(s,x,t) = J G; (s,x,T,1)Vi(7,t)dr,
S

t
ujp (s, x,t) = f G; (s,x,T,17)Viso (7, t)dT,

N
where 0 <s<t<T, x€ Ei ; @ is the function in (4); Vy,, k = 1,4, are continu-
ous functions in s € [0, t) satisfying the inequality
Vi(s, )| < c(t —s)"1*¢

for any € > 0.
Note that the functions u;y, uj1, u;» satisfy the equation (3) in the domains

[0,6) X D;, [0,8) X (D; \ {r}), [0,t) x (D; \ {r;}), respectively, and the initial
conditions
liTIrtl up (5, x,t) = (x), x €D,
S
li%l u;; (5,x,t) =0, x€D;\{r}, li%’ltl U (5,x,t) =0, x€D;\({r}
N N

In addition, the relations

2r+p

[DIDYuip(s,x, )| <clloll(t—s)" 2, 2r+p<2, (11)

t
dup(s,r+,8) | Vi(s,t) 0Z(s,1,7,7)
dx T bi(s,7) dx

S

Vi(z, t)dr, (12)

¢
Viia(s, t) N f 0Z(s,1;,7T,17)
bi(s,1;) dx

Qupp(s, 1, t)

Tx (—1)!

Vis2 (7, O)dz, (13)

hold.
Note also that the last two relations follow from the theorem on the jump
of the conormal derivative of a simple-layer potential (see [14, Ch. V, §§2-4]).
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2. Solution of the parabolic conjugation problem

The aim of this section is to establish the classical solvability of the conjugation
problem (3)-(7).
We find the solution of (3)-(7) of the form (x € D;,,0 < s <t < T)

u(s, x, t) = up(s, x,t) + uj (s, x,t) + up (s, x, t) (14)

with the unknown functions Vj, k = 1,4, to be determined. First we note that
in view of relations (3)-(5) the conditions (6), (7) reduce to

t

u(s,r,t) =) — f g(z, t)dr, (15)
St
u(s,r,t) = @(r;) — f hi(t, t)dr, (16)
where ’
1 d =, d , T+,
960 =~ @@L 0,0 2D 4y uer o
+ [ ueno - u@none dy)>,
D,UD,
L 1 O ou(r,r;,t)
(00 = —=( PO TS d p@urn, 0 + [ [utn,o

D;

—u(r,y, Olmi(z, dy))-

Then, substituting (14) into (15) and (16), we get, upon using the relations (12),
(13), the system of Volterra integral equations of the first kind

4 t
fNij(S,T)Vj(T, t)dt = ®;(s,t), 0<s<t<T,i=14, (17
=1lgs

J

where

q;(7) A y(p)
o(t)bi(r,7) ) a(p)

+PS(Ti)Gl-(s, X071 yr, =12,

N;i(s, 1) = G(s,7r,T,7) +

Gi(p' nT, T)d,D +
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q3-i(7)
o(D)bz_i(t,7)

Ni i+2(SJ T) = Gi(SJ nT, ri) +

N;3_;(s,T) = + Fg(13_i)G3_i(s, X,T,1) | x=r» i=1,2,

Y(,D)
a(p)

+pS(Ti)GL-(s, X, T, ri)lx:r' i=12,

—Gi(p,7,7,1)dp +

Nis_i(5,7) = P$706; (s, %, 1,73 )lxer, i=12,

lql(p)af(prxrt)dp+

t
ﬂ#mmw=jen“

o(p) Ox
fdpf flp,x,t) — f(p, y,t)]“(p(’p)y), i=12,
Di- Z(T)

Nii(s,7) = Gi—2(8,71-2, T, 71-2) + i
”(S T) i 2(5 Ti-2,T, T 2) o;_ z(T)bi—Z(T’ ri—Z)
, .
O PGia (5T D eer,, =34,
Nii_2(s,7) = Gi_5(s, 1, T,7) + Q(L Z)Gl 2087, |y=r,_, £=34,

NiS—i(S'T) = Ni 7—i(SJ T) = 0, i = 3,4,

t
0O f(s, 1) = f <(_1)1pl(p) af (p, x,t) Vl(p)f(p'x t)> i+

g; (p) 0x al( )

N

i (p, dy)

, i=1,2,
ai(p)

f@ffmxwf@%m

¢@o—mmﬂ%@m>]””

i=1,2,

uLO(prr t)dp Ep(tj)ujO(sr X, t)|x=r ,

Di(s,t) = p(1i-2) — Uiz 0(5,Ti—2,t) — sé Z)ui—z (s, x, t)|x=ri_z , 1=34.

Now we have to reduce (17) to the system of Volterra integral equations of the
second kind. For this purpose we consider the Holmgren transform

t
20 1
EiA(s, t) = \/;&J(p —5) 2A(p,t)dp, 0<s<t<T,
N

and apply it to both sides of each equation in (17). We get (i = 1,4)
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4 t t
29 !
j%%i J(p —$)2dp J Nij(p, DV (x, O)dt = Ee (s, £). (18)

J=1s p

Changing the order of integration in the right side of (18) and using the fact that

t t
ad d
gff@mﬂp=f§f@pwm

when lim,_; f (s, p) = 0, we can write

t T
20 -1
\/;%J Vi(z, t)drf(p —5) 2N;(p,7)dp +
N N
t

+Z J Vi(t,£)ENij (s, T)d T = Ee P (s, 8), i =14

Jj*is

Denote by Ni(il) the principal part of the fundamental solution which is the first
term in the expression for Nj;, i.e.,

(1) _ ZL'(S,T,T,T), i = 1,2,
Nii (S; T) - {Zi—z(sr Tio) T, ri—Z)' i = 3’4’
and by N ) a1l the rest of terms in the corresponding expression, so that

ii
N;; = Nl.(il) +NPi= 1,4. It is easy to verify that

ii

t
ZaJV(tM f( END (o =~ -1
rtass it TS p=s i P EEp = di(s)’ P

where

v bi(s, 1), i=1,2,
A bi_z(s, ri_z), i = 3,4’.

We therefore obtain the following system of Volterra integral equations of the
second kind, which is equivalent to (17):

di(s) = {

t
V(s t) = ZIKU 5DV, 6) + ¥i(s,0), i=14, (19)

j=1
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where

i(s,7) = {d (S)gSTN (s,1), i =

Wi(s, t) = —di(s)Ese Pi(s, ©).
dl(s)gerU(S;T); l¢], i(s,t) i(8)Es:D;(s, 1)

Note that for kernels K;; and functions ¥; in (19) the inequalities
|Kij(s, ‘L')| <c(t-— s)_1+5, (20)

W5, 0] < cllollt— )7z, @1

hold. To show how we estimate K;; consider in detail the case i = j € {1,2}. Thus,
we have to estimate Kj;(s,7) =+/b;i(s, 7)€ N(Z) (s,7),i =1,2. Applying the

transform E; to Nl(l ), we can write K;; in the form

2b;(s, T
K;i(s,7) = /%(Ri(l)(s, T) + Ri(z)(s, T) + Ri(3)(s, ‘L')), i=1,2,

where
T
(€3] 1 = ’
RV(s,1) =5 f (0= )72 (Zi(s, 7, 1. )~Z{(p, 7, 7,7))dp,

ql(p) aZl’ (p' nT, T') _ V(P)
a(p) ox a(p)

+ (Zl’ (s,r,T,7) — %) (t— s)_%,

,d
R (s,7) = — J (b —5)2dp J [Gi(p,m,7,7) = G(P»V'”)]M(:(p)y e
D;

If we apply the Lagrange formula to increment Z; (s, r,7,7)—Z; (p,7,7,7) in the

Ri(Z) (S, T) = f(P - S)_% [(_1)L Gi(p' nT, T)] d,D +

expression for Rl-(l) and use the inequality (9), we deduce that the estimate (20) is
valid for Ri(l). The estimate (20) for RL.(Z) follows easily from inequalities (9) and
(10). In order to verify (20) for Ri(3) it suffices to consider the integral

u(p,dy)
Ji(s,7) = f(p—S) 2dp f [Zi(p,r,T,7) = Zi(p,y, T, 1) ——=— o(p)
which differs from Rl.(g) in that it contains Z; instead of G;. Let us write J; in the
form
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]l‘(S,T) =]i1(S'T) +]i2(S,T),

where
u(t, dy)
Ju(s,1) = — f(p—s) zdpf[Z(p,rrr) 2oy, 1N,

D;

,d ,d
Jia(s,7) = f 6= 4p [12ormr) -2ty (5?1 75)

D;

For J;1 (s, 7) we have

—(y-1)2
ULI(S T)l = \/—J-(p - S)_%(T —p)_%dp J-<1 _ eZb%T—p))"l(T’ dy)

o(7)
1 1 L furdy) [ 9 280
= —8) 2(r - 2d J- e 2b:(t-p) do =
Tnbsf(” i [0 g
Z0(=r)2 p=s

5 dt,

—0(y-nr)? JE e 2b-(T=35) Tp
1
L (p—sp2(c—p)

1
- —r —rle2b:G=9) dg
2b\2mh Df ly l G(T) f v =l

where b is the constant in 1). The change of variables z = 2= in the inner integral
—p
in the last relation leads to

—0-r? [ 1 =8-r)?
J| —rle2b:=s) dg | z72e2b:(t-5) "dz <

Val < = 2bV2r (r—s)fl a(r) J

<c(t—s) 2.

(22)

In view of property c) of measure u, we can estimate J;, (s, 7). We deduce that
_1+5
U, <c(r—s)7"2 (23)
By combining inequalities (22) and (23) we obtain that
_1
Ji(s, 1) <c(r—s) 2.

It is clear that the same estimate is also valid for Ri(3) (s, 7).

Having estimated each function Ri(l) (s,7), Ri(z)(s, 7) and RL-(3)(S, T), wWe con-
clude that for K;;(s,7) in case i = j € {1,2} the inequality (20) holds. Similarly,
the inequality (20) is valid for kernels K;;(s, ), when i,j € {1, ... ,4}.



One-dimensional diffusions in bounded domains with a possible jump-like exit from a sticky boundary 111

Proceeding as in proof of the estimate (20), one can also prove the estimate (21)
for functions ¥;, i = ﬁ

From (20) and (21) it follows that there exists a solution of the system of integral
equations (19) which can be obtained by the method of successive approximations

Vi(s,t) = Z v® (s, 0<s<t<T, i=14 (24)
k=0

where

0
VO (s,6) = (s, 1),

4 t
Vi(k)(s, t) = Z J- Kij (s, ‘L')Vj(k_l)(r, t)dr, k=12,..
j=1s

Furthermore, functions V; satisfy the inequality
1
Viis,t)| <clloll(t—5s)2 0<s<t<T. (25)

We have thus constructed a solution u(s, x, t) of the problem (3)-(7) which is of
the form (14). Using the relations (8)-(11) and the estimate (25) it is easy to verify
that

u(s,x,t) € CY2([0,t) x (D1 U D,)) N C([0,t] x D).

Concerning the uniqueness of the solution of (3)-(7), note that it follows from
the maximum principle (see [ 14, Ch. II]).
We have proved the following theorem:

Theorem 1. Let the conditions 1), 2) and a)-c) hold, and let ¢ € C(D). Then the
problem (3)-(7) has a unique solution

u(s, x,t) € CY2([0,t) x (D, U D,)) N C([0,t] X D).

Furthermore, this solution can be represented as

t

u(s,x,t) = J-Gi (s, x,t,)o(y)dy + J G; (s,x,T,7)Vi(7,t)

R N
t

+f Gi (5, x,T,1)Visa(r,t)dr, 0<s<t<T, x€D; i=12,

N

where the collection (Vi),_17 is the solution of the system of Volterra integral
equations of the second kind (19).
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3. Construction of Feller semigroup

We introduce the two-parameter family of linear operators
To@(X) =u(s,x,t,9), 0<s<t<T, x€D, ¢E€C,(R), (26)

where u(s, x,t, @) is the solution of problem (3)-(7) with function ¢ in (4), and
proceed to study its properties in space Cp, (R).
First we note that if ¢, € C,(R) is a sequence of functions such that

sup ll@, I<oo and lim ¢, (x) = @(x), x €D,
n n—oo

then

lim Ty (%) = Teep(x), 0<s<t<T, x€D.
n—oo

This property easily follows from Lebesgue bounded convergence theorem.
We next prove that the operators Ty, 0 < s < t < T, are positivity preserving.

Lemma 1. If ¢ € C,(R) and ¢(x) = 0 for all x € D, then Tg(x) = 0 for all
0<s<t<T, x€D.

Suppose that T, (x) takes negative values in [0, t] X D and we denote by m its
minimum in [0, t] X D. Then, by the minimum principle, value m may be attained
only on (0,t) X {ry,7,12}. Let Ts 9 (xo) = m, (S, %) € (0,t) X {ry, 1,7}

In case x; = r the inequalities

0Ts cp(r —) 0T, cp(r +)
CI1(50)SOT <0, CIZ(SO)SOT =0,
Y (50)To () < 0, j [Ty, c0() = Ts,c0 ()50 dy) < O

hold and therefore L Ts r(r) <O0. This contradicts (6). Similarly, the case
Xo =13, L €{1,2} leads us to the inequality Lg Ts . (r;) <O which contradicts
(7). The contradiction at which we arrived indicates that m > 0. This completes
the proof of the lemma.

By similar considerations to those in the proof of Lemma 1, one can easily
verify that the operators Ty, are contractive, i.e.,

T 11, 0<s<t<T.
Note also that the operator family T; has a semigroup property

Tst = TorToe, 0<s<T<t<T, (27)
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This property is a consequence of the assertion of the uniqueness of the solution of
the problem (3)-(7). Indeed, considering the problem (3)-(7) in the time interval
[s, 7] with the function T, T <t < T, taken as the “initial” function, we deduce
that Ts;(Trep), 0 < s <t <t <T, is the solution of (3)-(7) with the function ¢
in (4), and hence (31) follows.

By combining the above properties we conclude (see [15], Ch. II) that T,

0 <s <t<T,is a Feller semigroup on D for which there exists a unique transi-
tion function P (s, x, t,-) on D such that

Teep(x) = JP (s,x,t,dy)ey), 0<s<t<T, x€D, ¢€C,(R).

D

Thus, we have proved the following theorem:
Theorem 2. Let the conditions of Theorem 1 hold. Then the two-parameter
semigroup of operators Tg;, 0 < s <t < T, defined by formula (26) describes the

inhomogeneous Feller process on D which coincides on D; and D, with the diffu-

sion processes generated by Agl) and Agz), respectively, and its behavior at each
point r, 1y, 1 is determined by corresponding conjugation condition or boundary
condition of Feller-Wentzell in (2).
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