PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of forced convection of nanofluid around a circular cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study a steady flow-field and heat transfer through a copper-water nanofluid around a circular cylinder, under the influence of both the standard thermal boundary conditions, i.e., uniform heat flux and constant wall temperature) was investigated numerically by using a finitevolume method for Reynolds numbers from the range 10–40. Furthermore, the range of nanoparticle volume fractions considered is 0–5%. The variation of the local and the average Nusselt numbers with Reynolds number, and volume fractions are presented for the range of conditions. The average Nusselt number is found to increase with increasing the nanoparticle volume fractions.
Rocznik
Strony
3--16
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wz.
Twórcy
autor
  • Department of Mechanical Engineering, University Saad Dahlab, Blida, Algeria
  • Département de génie mécanique Pôle universitaire de M’Sila, M’Sila 28000 Algeria
  • Military Academy of Cherchell,Tipaza, Algeria
  • Department of Mechanical Engineering, University Saad Dahlab, Blida, Algeria
Bibliografia
  • [1] Sanitjai S., Goldstein R.J.: Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int. J. Heat Mass Tran. 47(2004), 22, 4795–4805
  • [2] Bharti R.P., Chhabra R.P., Eswaran V.: A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder. Heat Mass Tran. 43(2007), 7, 639–648.
  • [3] Sufyan M., Manzoor S., Sheikh N.A.: Heat transfer suppression in flow around a rotating circular cylinder at high Prandtl number. Arab. J. Sci. Eng. 39(2014), 11, 8051–8063.
  • [4] Paramane S.B., Sharma A.: Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2D laminar flow regime. Int. J. Heat Mass Tran. 52(2009), 13-14, 3205–3216.
  • [5] Bouakkaz R., Talbi K., Khelil Y., SalhiF., Belghar N., Ouazizi M.: Numerical investigation of incompressible fluid flow and heat transfer around a rotating circular cylinder. Thermophys. Aeromech. 21(2014), 1, 87–97.
  • [6] Paramane S.B., Sharma A.: Heat and fluid flow across a rotating cylinder dissipating uniform heat flux in 2D laminar flow regime. Int. J. Heat Mass Tran. 53(2010), 21–22, 4672–4683.
  • [7] Brinkman H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Physics 20(1952), 571–581.
  • [8] Rup K., Nering K.: Unsteady natural convection in micropolar nanofluids. Arch. Thermodyn. 35(2014), 3, 155–170.
  • [9] Ho C.J., Chen M.W., Li Z.W.: Numerical simulation of natural convection ofnanofluid in a square enclosure: effect due to uncertainties of viscosity andthermal conductivity. Int. J. Heat Mass Tran. 51(2008), 4506–4516.
  • [10] Valipour M.S., Ghadi A.Z.:Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid. Int. Commun. Heat Mass 38(2011), 1296–1304.
  • [11] El-bashbeshy E.S.M.A., Emam T.G., Abdel-Wahed M.S.: The effect of thermal radiation, heat generation and suction/injection on the mechanical proproperties of unsteady continuous moving cylinder in a ananofluid. Thermal Sci. 19(2015), 5, 1591–1601.
  • [12] Vegad M., Satadia S.,Pradip P., Chirag P., Bhargav P.: Heat transfer characteristics of low Reynolds number flow of nanofluid around a heated circular cylinder. Procedia Technology 14(2014), 348–356.
  • [13] Farooji V.E., Bajestan E.E.,Niazmand H.,Wongwises S.:Unconfined laminar nanofluid flow and heat transfer around a square cylinder. Int. J. Heat Mass Tran. 55(2012), 1475–1485.
  • [14] Valipour M.S., Masoodi R., Rashidi S.,Bovand M., Mirhosseini M.: A numerical study on convection around a square cylinder using AL2O3-H2O nanofluid. Thermal Sci. 18(2014), 4, 1305–1314.
  • [15] Yu W., Choi S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J. Nanoparticle Res. 5(2003), 167–71.
  • [16] Kang S., Choi H., Lee S.: Laminar flow past a rotating circular cylinder. Phys. Fluids 11(1999), 11, 3312–3321.
  • [17] Mittal S., Kumar B.: Flow past a rotating cylinder. J. Fluid Mech. 476(2003), 303–334.
  • [18] Padrino J.C., Joseph D.D.: Numerical study of the steady-state uniform flow past a rotating cylinder. J. Fluid Mech. 557(2006), 191–223.
  • [19] Stojkovic D., Breuer M., Durst F.: Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14(2002), 9, 3160–3178.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d03d8867-1798-4bad-a3b9-156f359e9656
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.