PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive fault-tolerant position control of a hexacopter subject to an unknown motor failure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a fault tolerant position tracking controller for a hexarotor system. The proposed controller has a cascaded structure composed of a position and an attitude control loop. The nominal controller is augmented by an adaptive control allocation which compensates for faults and failures within the propulsion system without reconfiguration of the controller. Simultaneously, it is able to implement a degraded control strategy which prioritizes specific control directions in the case of extreme degradation. The main contribution is a controller that is a step closer to application scenarios by including outdoor GPS-based flight tests, onboard computation and the handling of unknown degradation and failure of any rotor.
Rocznik
Strony
309--321
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Institute of Flight System Dynamics (FSD), Technical University of Munich (TUM), Boltzmannstrasse 15, 85748 Garching, Germany
autor
  • Institute of Flight System Dynamics (FSD), Technical University of Munich (TUM), Boltzmannstrasse 15, 85748 Garching, Germany
autor
  • Institute of Flight System Dynamics (FSD), Technical University of Munich (TUM), Boltzmannstrasse 15, 85748 Garching, Germany
Bibliografia
  • [1] Achtelik, M., Doth, K.-M., Gurdan, D. and Stumpf, J. (2012). Design of a multi rotor MAV with regard to efficiency, dynamics and redundancy, Proceedings of Guidance, Navigation, and Control Conference, Minneapolis, MN, USA.
  • [2] Amoozgar, M.H., Chamseddine, A. and Zhang, Y. (2012). Fault-tolerant fuzzy gain scheduled PID for a quadrotor helicopter testbed in the presence of actuator faults, IFAC Proceedings Volumes 45(3): 282–287.
  • [3] Cen, Z., Noura, H. and Younes, Y.A. (2015). Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs, International Journal of Applied Mathematics and Computer Science 25(1): 159–174, DOI: 10.1515/amcs-2015-0012.
  • [4] Chaturvedi, N., Sanyal, A. and McClamroch, N. (2011). Rigid-body attitude control, IEEE Control Systems 31(3): 30–51.
  • [5] Chowdhary, G. (2010). Concurrent Learning for Convergence in Adaptive Control without Persistency of Excitation, PhD thesis, Georgia Institute of Technology, Atlanta, GA.
  • [6] Chowdhary, G. and Johnson, E. (2010). Concurrent learning for convergence in adaptive control without persistency of excitation, Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, pp. 3674–3679.
  • [7] Du, G.-X., Quan, Q. and Cai, K.-Y. (2015). Controllability analysis and degraded control for a class of hexacopters subject to rotor failures, Journal of Intelligent & Robotic Systems 78(1): 143–157.
  • [8] Ducard, G. and Hua, M.D. (2011). Discussion and practical aspects on control allocation for a multi-rotor helicopter, International, Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII(1/C22): 95–100.
  • [9] Dydek, Z., Annaswamy, A. and Lavretsky, E. (2010). Adaptive control of quadrotor UAVs in the presence of actuator uncertainties, Proceedings of AIAA Infotech@Aerospace 2010, Atlanta, GA, USA.
  • [10] Dydek, Z.T., Annaswamy, A.M. and Lavretsky, E. (2013). Adaptive control of quadrotor UAVs: A design trade study with flight evaluations, IEEE Transactions on Control Systems Technology 21(4): 1400–1406.
  • [11] Falconí, G.P., Angelov, J. and Holzapfel, F. (2016). Hexacopter outdoor flight test results using adaptive control allocation subject to an unknown complete loss of one propeller, Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, pp. 373–380.
  • [12] Falconí, G.P., Heise, C. and Holzapfel, F. (2015). Fault-tolerant position tracking of a hexacopter using an extended state observer, Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA), Queenstown, New Zealand, pp. 550–556.
  • [13] Falconí, G.P. and Holzapfel, F. (2013). Position tracking of a multicopter using a geometric backstepping control law, CEAS EuroGNC, Delft, The Netherlands.
  • [14] Falconí, G.P. and Holzapfel, F. (2014). Position tracking of a hexacopter using a geometric backstepping control law—Experimental results, Proceedings of the IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, pp. 20–25.
  • [15] Freddi, A., Longhi, S., Monteriù, A. and Prist, M. (2014). Actuator fault detection and isolation system for an hexacopter, Proceedings of the IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, pp. 1–6.
  • [16] Heise, C., Falconí, G. P. and Holzapfel, F. (2014). Hexacopter outdoor flight test results of an extended state observer based controller, Proceedings of the IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, pp. 26–33.
  • [17] Herceg, M., Kvasnica, M., Jones, C. and Morari, M. (2013). Multi-parametric toolbox 3.0, Proceedings of the European Control Conference, Zürich, Switzerland, pp. 502–510.
  • [18] Khalil, H.K. (2002). Nonlinear Systems, 3rd Edn., Prentice Hall, Upper Saddle River, NJ.
  • [19] Merheb, A.-R., Noura, H. and Bateman, F. (2015). Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory, International Journal of Applied Mathematics and Computer Science 25(3): 561–576, DOI:10.1515/amcs-2015-0042.
  • [20] Mueller, M.W. and D’Andrea, R. (2014). Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 45–52.
  • [21] Mühlegg, M., Niermeyer, P., Falconí, G.P. and Holzapfel, F. (2015). L1 fault tolerant adaptive control of a hexacopter with control degradation, Proceedings of the IEEE Conference on Control Applications (CCA), Sydney, Australia, pp. 750–755.
  • [22] Mühlegg, M., Niermeyer, P. and Holzapfel, F. (2014). Reference command shaping for approximate dynamic inversion based model reference adaptive control, Proceedings of the IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, pp. 179–184.
  • [23] Potra, F. A. and Shi, Y. (1995). Efficient line search algorithm for unconstrained optimization, Journal of Optimization Theory and Applications 85(3): 677–704.
  • [24] Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H. and Sanahuja, G. (2015). Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, pp. 5266–5271.
  • [25] Santos, M.F., Honório, L.M., Costa, E.B., Oliveira, E.J. and Visconti, J. P. P. G. (2015). Active fault-tolerant control applied to a hexacopter under propulsion system failures, 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, Romania, pp. 447–453.
  • [26] Schneider, T., Ducard, G., Rudin, K. and Strupler, P. (2012). Fault-tolerant control allocation for multirotor helicopters using parametric programming, International Micro Air Vehicle Conference (IMAV), Braunschweig, Germany.
  • [27] Vey, D. and Lunze, J. (2016). Experimental evaluation of an active fault-tolerant control scheme for multirotor UAVs, 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, pp. 125–132.
  • [28] Yang, Y., Iwakura, D., Namiki, A., Nonami, K. and Wang, W. (2016). Autonomous flight of hexacopter under propulsion system failure, Journal of Robotics and Mechatronics 28(6): 899–910.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d03bcbc2-4a20-4e6c-a55d-d8b05b9043be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.