Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A research of wear resistance of an austenitic cast iron with higher resistance to abrasive-wear and maintained corrosion resistance characteristic for Ni-Resist cast iron is presented. For the examination, structure of raw castings was first formed by proper selection of chemical composition (to make machining possible). Next, a heat treatment was applied (annealing at 550 °C for 4 hours followed by air cooling) in order to increase abrasive-wear resistance. One of the factors deciding intensity of wear appeared to be the chilling degree of castings. However, with respect to unfavourable influence of chilling on machining properties, an important factor increasing abrasive-wear resistance is transformation of austenite to acicular ferrite as a result of annealing non-chilled castings. Heat treatment of non-chilled austenitic cast iron (EquNi > 16%) resulted in much higher abrasive-wear resistance in comparison to the alloy having pearlitic matrix at ambient temperature (EquNi 5.4÷6.8%).
Czasopismo
Rocznik
Tom
Strony
43--48
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Witelon State University of Applied Science in Legnica, Faculty of Technical and Economic Sciences, Legnica, Poland
autor
- Wroclaw University of Science and Technology, Department of Foundry Engineering, Wrocław, Poland
Bibliografia
- [1] Rundman, K.B., Moore, D.J., Hayrynen, K.L., Dubensky, W.J. & Rouns, T.N. (1988). The microstructure and mechanical properties of austempered ductile iron. Journal of Heat Treating. 5, 79-95.
- [2] Shelton, P.W. & Bonner, A.A. (2006). The effect of copper additions to the mechanical properties of austempered ductile iron (ADI). Journal of Materials Processing Technology. 173(3), 269-274.
- [3] Věchet, S., Kohout, J. & Klakurková, L. (2008). Fatigue properties of austempered ductile iron in dependence of transformation temperature. Materials Science. 14(4), 324-327.
- [4] Balos, S., Grabulov, V., Sidjanin, L., Pantic, M. & Radisavljevic, I. (2010). Geometry, mechanical properties and mounting of perforated plates for ballistic application. Materials and Design. 31, 2916-2924.
- [5] Vadiraj, A., Balachandran, G., Kamaraj, M. & Kazuya, E. (2011). Mechanical and wear behavior of quenched and tempered alloyed hypereutectic gray cast iron. Materials & Design. 32(4), 2438-2443.
- [6] Olofsson, J. & Svensson, I.L. (2013). The effects of local variations in mechanical behaviour – Numerical investigation of a ductile iron component. Materials and Design. 43, 264-271.
- [7] Zhang, J., Zhang, N., Zhang, M., Liantao, L. & Zeng, D. (2014). Microstructure and mechanical properties of austempered ductile iron with different strength grades. Materials Letters. 119, 47-50.
- [8] Panneerselvama, S., Putatundaa, S.K., Gundlachb, R. & Boileauc, J. (2017). Influence of intercritical austempering on the microstructure and mechanical properties of austempered ductile cast iron (ADI). Materials Science & Engineering A. 694, 72-80.
- [9] Sarkar, T., Bose, P.K. & Sutradhar, G. (2018). Mechanical and tribological characteristics of copper alloyed austempered gray cast iron (AGI). Materials Today: Proceedings. 5(2), 3664-3673.
- [10] Sellamuthu, P., Harris Samuel, D.G., Dinakaran, D., Premkumar, V.P., Li, Z. & Seetharaman, S. (2018). Influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption. Metals. 8(1), 53.
- [11] Jalava, K., Soivio, K., Laine, J. & Orkas, J. (2018) Elevated temperature thermal conductivities of some as-cast and austempered cast irons. Materials Science and Technology. 34(3), 327-333.
- [12] Medyński, D., Janus, A. & Zaborski, S. (2017). Effect of heat-treatment parameters of cast iron GJS-X350NiMnCu7-3-2 on its structure and mechanical properties. Archives of Foundry Engineering. 17(1), 121-126.
- [13] Medyński, D. & Janus, A. (2018). Effect of heat treatment parameters on abrasive wear and corrosion resistance of austenitic nodular cast iron Ni–Mn–Cu. Archive of Civil and Mechanical Engineering. 18(1), 215-521.
- [14] Seyedi, S. & Rikhtegar, R. (1994). Reducing the nickel content by using manganese in austenitic ductile iron. J. Iranian Foundrymen's Society. 14, 122-136.
- [15] Lacaze, J., Wilson, C. & Bak, C. (1994). Experimental-study of the eutectoid transformation in spheroidal graphite cast-iron. Scandinavian Journal of Metallurgy. 23(4), 151-163.
- [16] Szpunar, E. (1995). The influence of copper on the structure of the austenitic ductile iron Ni-Mn-Cu. Report of Institute of Precise Mechanics. 1, 12-25 (in Polish).
- [17] Lacaze, J. (2001). Discussion of „The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron. Metallurgical and Materials Transactions A. 32(6), 2133-2135.
- [18] Ahmabadabi, M.N. & Shamloo, R. (2001). Control of austenitic transformations in ductile iron aided by calculation of Fe-C-Si-X phase boundaries. Journal of Phase Equilibria. 22(3), 1994-1998.
- [19] Pietrowski, S. & Bajerski, Z. (2005). Ni-Resist cast iron with reduced nickel content. Archive of Foundry. 5, 445-458.
- [20] Janus, A. (2013). Forming of castings structure of austenitic cast iron Ni-Mn-Cu. Wroclaw: Editorial Office of Wrocław University of Science and Technology. (in Polish).
- [21] Medyński, D. & Janus, A. (2016). Effect of austenite transformation on abrasive wear and corrosion resistance of spheroidal Ni-Mn-Cu cast iron. Archives of Foundry Engineering. 16(3), 63-66.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d039d94f-fa71-4e16-91e3-3bf549e78d79