PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal design of a composite propellant formulation using response surface methodology

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a continuous demand for high performance composite propellant formulations to meet mission requirements. The performance of composite propellant formulations can be enhanced by optimizing propellant formulation. However, the main objective of this study is to formulate a composition for composite propellant by optimizing the specific impulse which is the measure of propellant performance. A central composite design (ccd) consisting five ingredients (ammonium nitrate, powdered aluminum, polyester resin, ammonium dichromate and powdered charcoal) at five levels was used to formulate optimum propellant formulation from composite materials of ammonium nitrate based propellant verified for propellant characteristics using propellant performance evaluation programme (propep 3). The responses evaluated are specific impulse, characteristic velocity, density, temperature and molecular weight. Response surface methodology was used to analyze the results of the ccd of the composite formulations. The optimum values for specific impulse, characteristic velocity, density, temperature and molecular weight of the mixture from the surface plot are 212.178 s, 1335.81 m/s, 1640.6 k g/m3, 1968.73 k and 21.7722 g/mol respectively. The optimum predicted specific impulse was 212.178 s at composite composition of 73.61% ammonium nitrate, 4.36% powdered aluminum, 14.39% polyester resin, 5.10% ammonium dichromate and 2.54% powdered charcoal. The propellant optimum composition validated with propep 3 are in good agreement with each other in their accompany propellant characteristics. Therefore, the optimal propellant formulation enhanced the performance of solid propellants.
Rocznik
Strony
44--57
Opis fizyczny
Bibliogr. 23 poz., wykr., tab.
Twórcy
autor
  • Center for Space Transport and Propulsion, NASRDA, Epe, Lagos
  • Department of Chemical Engineering, LAUTECH, Ogbomoso
autor
  • Center for Space Transport and Propulsion, NASRDA, Epe, Lagos
Bibliografia
  • 1. Fitzgerald R. P., Brewster M. Q., Journal of Combustion and Flame, 154 (2008), 660-670p.
  • 2. Carro R. et al., Proceeding of 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, Arizona (2005).
  • 3. Brown C. D., Spacecraft Propulsion, AIAA, Washington (1995).
  • 4. Sutton G. P., Biblarz O., Rocket Propulsion Elements, John Wiley & Sons, 7th ed., New York (2001).
  • 5. Catherine K. B., et al., Journal of Thermal Analysis and Calorimetry, 59 (2000), 93-100.
  • 6. Yang R., An H., Tan H., Combustion and Thermal Decomposition of HNIW and HTPB/HNIW Propellants with Additives, Combustion and Flame, 135 (2003), 463-473.
  • 7. Singh S., Raina C. S., Bawa A. S., Sexena D. C., Sweet potato-based pasta product: optimization of ingredient levels using response surface methodology, International Journal of Food Science and Technology 38 (2003). 1-10.
  • 8. Langlet A., Wingborg N., Ostmark H., A New High Performance Oxidizer for Solid Propellants, International Journal of Energetic Materials and Chemical Propulsion, 4 (1997), 1-6.
  • 9. Schoyer H. F. R., Schnork A. J., Korting P. A. O. G., van Lit P. J. First Experimental Results of an HNF/Al/GAP Solid Propellant, AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, T. L. 33rd, Seattle, WA, (1997) 6-9.
  • 10.Couturier R., Advanced Energetic Binder Propellants, Solid Rocket Propulsion Technology, A. Davenas, Ed., Pergamon Press, Oxford, (1993) 510-511.
  • 11.Boyars C., Klager K., Propellants, Manufacturing, Hazards and Testing, American Chemical Society, Washington D.C, 88 (1969).
  • 12.Muthiah R. M., Varghese Rao S. S., Ninan K. N., Krishnamurthy V. N., Realization of an Eco-friendly Solid Propellant Based on HTPB-HMX-AP System for Launch Vehicle Applications, International Journal of Energetic Materials and Chemical Propulsion, 4 (1997), 1-6.
  • 13.Hartfield R., Jenkins R., Burkhalter J., Foster W., A Review of Analytical Methods for Solid Rocket Motor Grain Analysis, AIAA (2003) 2003-4506.
  • 14.Montgomery D. C., Design and Analysis of Experiments: Response Surface Method and Designs, New Jersey: John Wiley and Sons, Inc (2005).
  • 15.Ogunleye O. O., Hamed J. O., Alagbe S. O., Optimization of Potassium Nitrate Based Solid Propellant Grains Design Using Response Surface Methodology, Advances in Science and Technology Research Journal, 9, No. 27 (2015), 123 - 134.
  • 16.Sutton G. P., Rocket Propulsion Elements, John Wiley & Sons, MIT, 6th ed., New York (1992).
  • 17.Bluestone S., et al., Proceedings of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Nashville, TN (2010).
  • 18.Cai W.D., Thakre P., Yang V., Model of AP/HTPB composite propellant combustion in rocket motor environments, Combust. Sci. Tech., 180 (2008), 2143-2169.
  • 19.Yang V., Brill T., Ren W. Z., Solid-Propellant Chemistry, Combustion, and Motor Interior Ballistics, Progress Astronautics and Aeronautics, AIAA, 185 (2000), 990.
  • 20.Beckstead M. W., Puduppakkam K., Thakre P., Yang V., Modeling of combustion and ignition of solid-propellant ingredients, Programme Energy Combustion Science, 33 (6) (2007), 497-551.
  • 21.Krishnan S., Rajesh K. K., Proceedings of 37th AIAA/ASME/SAE/ASEE, Joint Propulsion Committee Conference and Exhibit Salt Lake City, Utah (2001).
  • 22.Jayaraman K., et al., Combustion and Flame, 156 (2009), 1662-1673.
  • 23.Yildirim C., Analysis of Grain Burn back and Internal Flow In Solid Propellant Rocket Motors in 3- Dimensions, Ph. D. Dissertation, Department of Mechanical Engineering, METU, (2007), 110-118.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d038e58d-f90e-4471-b685-09fcc39d264d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.