PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Test BMP w ocenie i modelowaniu produkcji biogazu z organicznych substratów: przegląd literaturowy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
BMP test in the assessment and modeling of biogas production from organic substrates: review
Języki publikacji
PL
Abstrakty
PL
Współczynnik produkcji biogazu jest jednym z najważniejszych parametrów oceny efektywności procesu fermentacji. Jednym z narzędzi pozwalających na jego oszacowanie, a tym samym określenie potencjału metanogennego badanych materiałów, są testy BMP (ang. biochemical methane potential). W literaturze znaleźć można szereg procedur przeprowadzania testów. Różnorodność schematów badawczych rodzi szereg pytań dotyczących czynników wpływających na ich wynik, powtarzalność, a w dalszej kolejności na możliwość porównywania rezultatów testów wykonywanych w różnych laboratoriach. W artykule szczegółowo przedstawiono główne grupy czynników wpływających na wynik testów BMP, omówiono między innymi wpływ inoculum, medium fermentacyjnego, rodzaju substratu, a także przedstawiono zakresy parametrów operacyjnych stosowanych w testach. Dodatkowo zaprezentowano procedury badawcze stosowane do oszacowania produkcji metanu dla bardzo zróżnicowanych odpadów.
EN
Methane yield is one of the most important parameters to assess the efficiency of the anaerobic digestion process. The biochemical methane potential (BMP) assay has been widely used to determine the methane yield of organic substrates. First test method was described by Owen et al. in 1979. Since then, a variety of test procedures for determination of biochemical methane potential have been reported. Lack of standard protocol for carrying out measuring biochemical methane potential of various substrates limits the ability to compare results between laboratories. Additionally, there are many factors that may influence the anaerobic biodegradability of organic materials and a consequence on methane yield. This article discusses the impact of the following factors: type of substrate, particle size of the substrate, inoculum, anaerobic medium, inoculum and experimental conditions such as gas measurement systems, pH and alkalinity, temperature, reactor capacity, stirring, duration of the test. Many factors must be taken into account in the case of inoculum. It should take into account such factors as: the source of the sludge used as inoculum and its state of acclimation and adaptation to a test, inoculum activity, inoculum to substrate ratio (I/S or ISR). ISR is one of the most important parameters in batch tests. Inoculum / substrate ratio of 1 (VS basis) is usually used in the assessment of the biochemical methane potential. Nevertheless, in the case of more recalcitrant wastes, the rate of methane production in biochemical methane potential assays was optimized by increasing the I/S ratio to 2 g VS/g VS. The BMP results compiled in this article showed that BMP assay are a relatively simple and reliable method to obtain the biochemical methane potential and rate of organic matter conversion to methane. The major disadvantage of BMP tests is their duration. In summary, the data presented in the review indicate that each of the presented procedures have limitations, and currently there is no method for routine assessment of methane potential different substrates. It seems that at present one of the key research areas in the field of this subject is to extend initially outlined in the work of Angelidaki et al. [6] some basic guidelines for scientists studying this parameter. Posted at end of article, table lists the details of the procedures used to determine the biochemical methane potential different organic substrates.
Rocznik
Strony
559--581
Opis fizyczny
Bibliogr. 85 poz.
Twórcy
autor
  • Politechnika Częstochowska, Instytut Inżynierii Środowiska, ul. Brzeźnicka 60a, 42-200 Częstochowa
autor
  • Politechnika Częstochowska, Instytut Inżynierii Środowiska, ul. Brzeźnicka 60a, 42-200 Częstochowa
Bibliografia
  • [1] Angelidaki I., Sanders W., Assessment of the anaerobic biodegradability of macropollutants, Re/Views in Environmental Science & Bio/Technology 2004, 3(2), 117-129.
  • [2] Lesteur M., Latrille E., Maurel V.B., Roger J. M., Gonzalez C., Junqua G., Steyer J. P., First step towards a fast analytical method for the determination of biochemical methane potential of solid wastes by near infrared spectroscopy, Bioresource Technology 2011, 102(3), 2280-2288.
  • [3] Raposo F., De la Rubia M.A., Fernandez-Cegri V., Borja R., Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures, Renewable and Sustainable Energy Reviews 2012, 16(1), 861-877.
  • [4] Li Y., Feng L., Zhang R., He Y., Liu X., Xiao X., Liu G., Influence of inoculum source and preincubation on bio-methane potential of chicken manure and corn stover, Applied Biochemistry and Biotechnology 2013, 171(1), 117-127.
  • [5] Elbeshbishy E., Nakhla G., Hafez H., Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source, Bioresource Technology 2012, 110, 18-25.
  • [6] Angelidaki I., Alves M., Bolzonella D., Borzacconi L., Campos J.L., Guwy A.J., Kalyuzhnyi S., Jenicek P.,Van Lier J.B., Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science and Technology 2009, 59(5), 927-934.
  • [7] Gerber M., Schneider N., Kowalczyk A., Schwede S., Rehman Z., Span R., The influence of preincubation, storage and homogenization of inoculum for batch tests on biogas production, [w]: Lema, Juan M. (Hrsg.), Recovering (bio) resources for the world: Proceedings of 13th World Congress on Anaerobic Digestion, 25th-28th June 2013 Santiago de Compostela (Spain), Santiago de Compostela: Lapices 4, 2013.
  • [8] Wagland S.T., Tyrrel S.F., Godley A.R., Smith R., Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill, Waste Management 2009, 29(3), 1218-1226.
  • [9] Luostarinen S., Luste M., Sillanpaa M., Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant, Bioresource Technology 2009, 100, 79-85.
  • [10] Murto M., Bjornsson L., Rosqvist H., Bohn I., Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households, Waste Management 2013, 33(5), 1282-1289.
  • [11] Esposito G., Frunzo L., Panico A., Pirozzi F., Model calibration and validation for OFMSW and sewage sludge co-digestion reactors, Waste Management 2011, 31(12), 2527-2535.
  • [12] Schattauer A., Abdoun E., Weiland P., Plochl M., Heiermann M., Abundance of trace elements in demonstration biogas plants, Biosystems Engineering 2011, 108(1), 57-65.
  • [13] Owen W.F., Stuckey D.C., Healy Jr J.B., Young L.Y., Mccarty P.L., Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Research 1979, 13(6), 485-492.
  • [14] Shelton D.R., Tiedje J.M., General method for determining anaerobic biodegradation potential, Applied and Environmental Microbiology 1984, 47 (4), 850-857.
  • [15] Godley A.R., Graham A., Lewin K., Estimating Biodegradable Municipal Solid Waste Diversion from Landfill: Screening Exercise to Evaluate the Performance of Biodegradable Waste Test Methods. Environment Agency, Bristol, 2005, Report P1-513.
  • [16] Isci A., Demirer G.N., Biogas production potential from cotton wastes, Renewable Energy 2007, 32(5), 750-757.
  • [17] ASTM E2170-01, Standard test method for determining anaerobic biodegradation potential of organic chemicals under methanogenic conditions, 2008.
  • [18] Gonzalez-Gil G., Seghezzo L., Lettinga G., Kleerebezem R., Kinetics and mass-transfer phenomena in anaerobic granular sludge, Biotechnology and Bioengineering 2001, 73, 125-134.
  • [19] Raposo F., Banks C.J., Siegert I., Heaven S., Borja R., Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests, Process Biochemistry 2006, 41(6), 1444-1450.
  • [20] Pobeheim H., Munk B., Johansson J., Guebitz G.M., Influence of trace elements on methane formation from a synthetic model substrate for maize silage, Bioresource Technology 2010, 101(2), 836-839.
  • [21] Hu Z.H., Yu H.Q., Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover, Process Biochemistry 2005, 40(7), 2371-2377.
  • [22] Raposo F., Fernandez‐Cegri V., De la Rubia M.A., Borja R., Beline F., Cavinato C., …, De Wilde V., Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study, Journal of Chemical Technology and Biotechnology 2011, 86(8), 1088-1098.
  • [23] Neves L., Oliveira R., Alves M.M., Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios, Process Biochemistry 2004, 39(12), 2019-2024.
  • [24] Lesteur M., Bellon-Maurel V., Gonzalez C., Latrille E., Roger J.M., Junqua G., Steyer, J.P., Alternative methods for determining anaerobic biodegradability: A review, Process Biochemistry 2010, 45(4), 431-440.
  • [25] Chynoweth D.P., Turick C.E., Owens J.M., Jerger D.E., Peck M.W., Biochemical methane potential of biomass and waste feedstock, Biomass and Bioenergy 1993, 5(1), 95-111.
  • [26] Labatut R.A., Angenent L.T., Scott N.R., Biochemical methane potential and biodegradability of complex organic substrates, Bioresource Technology 2011, 102 (3), 2255-2264.
  • [27] Hashimoto A.G., Effect of inoculum/substrate ratio on methane yield and production rate from straw, Biological Wastes 1989, 28, 247-255.
  • [28] Gonzalez-Fernandez C., Garcia-Encina P.A., Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry, Biomass and Bioenergy Technology 2009, 33(8), 1065-1069.
  • [29] Chen T.H., Hashimoto A.G., Effects of pH and substrate: inoculum ratio on batch methane fermentation, Bioresource Technology 1996, 56(2), 179-186.
  • [30] Hansen T.L., Schmidt J.E., Angelidaki I., Marca E., Jansen J.L.C., Mosbak H., Christensen T.H., Method for determination of methane potentials of solid organic waste, Waste Management 2004, 24(4), 393-400.
  • [31] Kelly R.J., Shearer B.D., Kim J., Goldsmith C.D., Hater G.R., Novak J.T., Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability, Waste Management 2006, 26(12), 1349-1356.
  • [32] Moody L., Using Biochemical Methane Potentials & Anaerobic Toxicity Assays, http://www.epa.gov/agstar/documents/conf10/Moody_Final.pdf
  • [33] Stergar V., Končan J.Z., The determination of anaerobic biodegradability of pharmaceutical waste using advanced bioassay technique, Chemical and Biochemical Engineering Quarterly 2002, 16(1), 17-24.
  • [34] Harries C.R., Cross C.J., Smith R., Development of a biochemical methane potential (BMP) test and application to testing of municipal solid waste samples, Proceedings of the Eighth International Landfill Symposium 2001, 579-588.
  • [35] Edelmann W., Engeli H., Gradenecker M., Co-digestion of organic solid waste and sludge from sewage treatment, Water Science and Technology 2000, 41, 3, 213-221.
  • [36] Palmowski L., Muller J., Influence of the size reduction of organic waste on their anaerobic digestion, Water Science and Technology 2000, 41, 3, 155-163.
  • [37] Mshandete A., Bjornsson L., Kivaisi A.K., Rubindamayugi M.S.T., Mattiasson B., Effect of particle size on biogas yield from sisal fibre waste, Renewable Energy 2006, 31(14), 2385-2392.
  • [38] Grosser A., Neczaj E., Worwąg M., Fermentacja organicznej frakcji odpadow komunalnych - przegląd literaturowy, [w:] Gospodarka odpadami komunalnymi, pod red. K. Szymańskiego, Wyd. Uczelniane Politechniki Koszalińskiej, Koszalin 2012, VIII, 371-401.
  • [39] Bień J.B., Osady ściekowe - teoria i praktyka, Wyd. Politechniki Częstochowskiej, Częstochowa 2007.
  • [40] Gerardi M.H., The Microbiology of Anaerobic Digesters, John Wiley & Sons, Inc., Hoboken, New Jersey 2003.
  • [41] Karim K., Hoffmann R., Klasson K.T., Dahhan M.H., Anaerobic digestion of animal waste: Effect of mode of mixing, Water Research 2005, 39, 3597-3606.
  • [42] Tabatabaei M., Sulaiman A., Nikbakht A.M., Yusof N., Najafpour G., Influential Parameters on Biomethane Generation in Anaerobic Wastewater Treatment Plants, [w:] Alternative Fuel, ed. M. Manzanera, InTech 2011, 227-262, dostęp on-line: http://www.intechopen.com/books/alternative-fuel/influential-parameters-on-biomethane-generation-in-anaerobic-wastewatertreatment-plants
  • [43] Vavilin V.A., Fernandez B., Palatsi J., Flotats X., Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview, Waste Management 2008, 28(6), 941-953.
  • [44] Lopes W.S., Leite V.D., Prasad S., Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste, Bioresource Technology 2004, 94(3), 261-266.
  • [45] Rao M.S., Singh S.P., Singh A.K., Sodha M.S., Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage, Applied Energy 2000, 66(1), 75-87.
  • [46] Kaparaju P., Luostarinen S., Kalmari E., Kalmari J., Rintala J., Co-digestion of energy crops and industrial confectionery by-products with cow manure: batch-scale and farm-scale evaluation, Water Science and Technology 2002, 45(10), 275-280.
  • [47] Raposo F., Borja R., Rincon B., Jimenez A.M., Assessment of process control parameters in the biochemical methane potential of sunflower oil cake, Biomass and Bioenergy 2008, 32(12), 1235-1244.
  • [48] Nghiem L.D., Nguyen T.T., Manassa P., Fitzgerald S.K., Dawson M., Vierboom S., Co-digestion of sewage sludge and crude glycerol for on-demand biogas production, International Biodeterioration & Biodegradation 2014, http://dx.doi.org/10.1016/j.ibiod.2014.04.023
  • [49] Hidalgo D., Martin-Marroquin J.M., Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils, Journal of Environ Management 2014, 1, 142, 17-22.
  • [50] Cabbai V., Ballico M., Aneggi E., Goi D., BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge, Waste Management 2013, 33(7), 1626-1632.
  • [51] Zhang R., El-Mashad H.M., Hartman K., Wang F., Liu G., Choate C., Gamble, P., Characterization of food waste as feedstock for anaerobic digestion, Bioresource Technology 2007, 98(4), 929-935.
  • [52] Davidsson A., Gruvberger C., Christensen T.H., Hansen T.L., Jansen J.L.C., Methane yield in source-sorted organic fraction of municipal solid waste, Waste Management 2007, 27(3), 406-414.
  • [53] Amon T., Amon B., Kryvoruchko V., Zollitsch W., Mayer K., Gruber L., Biogas production from maize and dairy cattle manure - Influence of biomass composition on the methane yield, Agricultural & Ecosystem Environmental 2007, 118, 173-182.
  • [54] Lehtomaki A., Viinikainen T.A., Rintala J.A., Screening boreal energy crops and crop residues for methane biofuel production, Biomass and Bioenergy 2008, 32(6), 541-550.
  • [55] Nopharatana A., Pullammanappallil P.C., Clarke W.P., Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor, Waste Management 2007, 27(5), 595-603.
  • [56] El-Mashad H.M., Zhang R., Biogas production from co-digestion of dairy manure and food waste, Bioresource Technology 2010, 101(11), 4021-4028.
  • [57] Rincon B., Banks C.J., Heaven S., Biochemical methane potential of winter wheat (Triticum aestivum L.): influence of growth stage and storage practice, Bioresource Technology 2010, 101(21), 8179-8184.
  • [58] Parawira W., Murto M., Zvauya R., Mattiasson B., Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves, Renewable Energy 2004, 29(11), 1811-1823.
  • [59] Pabon Pereira C.P., Anaerobic Digestion in Sustainable Biomass Chains. Ph.D. Thesis, Wageningen University, 2009.
  • [60] Hejnfelt A., Angelidaki I., Anaerobic digestion of slaughterhouse by-products, Biomass and Bioenergy 2009, 33(8), 1046-1054.
  • [61] Liu G., Zhang R., El-Mashad H.M., Dong R., Effect of feed to inoculum ratios on biogas yields of food and green wastes, Bioresource Technology 2009, 100(21), 5103-5108.
  • [62] Zeng S., Yuan X., Shi X., Qiu Y., Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp., Journal of Hazardous Materials 2010, 178(1-3), 89-93.
  • [63] Bruni E., Jensen A.P., Pedersen E.S., Angelidaki I., Anaerobic digestion of maize focusing on variety, harvest time and pretreatment, Applied Energy 2010, 87(7), 2212-2217.
  • [64] Chanakya H.N., Sharma I., Ramachandra T.V., Micro-scale anaerobic digestion of point surce components of organic fraction of municipal solid waste, Waste Management 2009, 29(4), 1306-1312.
  • [65] Dinuccio E., Balsari P., Gioelli F., Menardo S., Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses, Bioresource Technology 2010, 101(10), 3780-3783.
  • [66] Forster-Carneiro T., Perez M., Romero L.I., Sales D., Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources, Bioresource Technology 2007, 98(17), 3195-3203.
  • [67] Gunaseelan V.N., Biochemical methane potential of fruits and vegetable solid waste feedstocks, Biomass and Bioenergy 2004, 26(4), 389-399.
  • [68] Jokela J.P.Y., Vavilin V.A., Rintala J.A., Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation, Bioresource Technology 2005, 96(4), 501-8.
  • [69] Kaparaju P., Serrano M., Thomsen A.B., Kongjan P., Angelidaki I., Bioethanol, bio-hydrogen and biogas production from wheat straw in a biorefinery concept, Bioresource Technology 2009, 100(9), 2562-2568.
  • [70] Kryvoruchko V.,Machmuller A., Bodiroza V., Amon B., Amon T., Anaerobic digestion of by-products of sugar beet and starch potato processing, Biomass and Bioenergy 2009, 33(4), 620-627.
  • [71] Lee D.H., Behera S.K., Kim J.W., Park H.S., Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study, Waste Management 2009, 29(2), 876-882.
  • [72] Lei Z., Chen J., Zhang Z., Sugiura N., Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation, Bioresource Technology 2010, 101(12), 4343-4348.
  • [73] Masse D., Gilbert Y., Savoie P., Belanger G., Parent G., Babineau D., Methane yield from switchgrass harvested at different stages of development in Eastern Canada, Bioresource Technology 2010, 101(24), 9536-9541.
  • [74] Neves L., Ribeiro R., Oliveira R., Alves M.M., Enhancement of methane production from barley waste, Biomass and Bioenergy 2006, 30(6), 599-603.
  • [75] Neves L, Oliveira R, Alves M.M., Anaerobic co-digestion of coffee waste and sewage sludge, Waste Management 2006, 26(2), 176-81.
  • [76] Neves L., Goncalo E., Oliveira R., Alves M.M., Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures, Waste Management 2008, 28(6), 965-972.
  • [77] Nkemka V.N., Murto M., Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals, Journal of Environmental Management 2010, 91(7), 1573-1579.
  • [78] Nzila C., Dewulf J., Spanjers H., Kiriamiti H., van Langenhove H., Biowaste energy potential in Kenya, Renewable Energy 2010, 35(12), 2698-2704.
  • [79] O’Sullivan C., Rounsefell B., Grinham A., Clarke W., Udy J., Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba caroliniana) and salvinia (Salvinia molesta), Ecological Engineering 2010, 36(10), 1459-1468.
  • [80] Paepatung N., Nopharatana A., Warinthorn S., Bio-methane potential of biological solid materials and agricultural wastes, Asian Journal on Energy and Environment 2009, 10(1), 19-27.
  • [81] Pakarinen O., Lehtomaki A., Rissanen S., Rintala J., Storing energy crops for methane production: effects of solids content and biological additive, Bioresource Technology 2008, 99(15), 7074-7082.
  • [82] Petersson A., Thomsen M.H., Hauggaard-Nielsen H., Thomsen A.B., Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean, Biomass and Bioenergy 2007, 31(11-12), 812-819.
  • [83] Pommier S., Llamas A.M., Lefebvre X., Analysis of the outcome of shredding pretreatment on the anaerobic biodegradability of paper and cardboard materials, Bioresource Technology 2010, 101(2), 463-468.
  • [84] Seppala M., Paavola T., Lehtomaki A., Rintala J., Biogas production from boreal herbaceous grasses - specific methane yield and methane yield per hectare, Bioresource Technology 2009, 100(12), 2952-2958.
  • [85] Shanmugam P., Horan N.J., Simple and rapid methods to evaluate methane potential and biomass yield for a range of mixed solid wastes, Bioresource Technology 2009, 100(1), 471-474.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d038bd9e-095e-4dcc-92a7-96abd2250f03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.