Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One potential candidate technology for Beyond 5G (B5G) networks is the reconfigurable intelligent surface (RIS), which is easy to install on existing infrastructure such as vehicles and buildings. Creating additional paths between the transmitter and receiver to improve the received signal accessible to the system is one of the significant uses of RIS. A virtual line of sight (VLOS) is established through the Tx-RIS-Rx link without the line of sight (LOS). RIS technology solves the problem of low coverage in millimeter-wave communications. This paper presents the effect of the signal-to-noise ratio by changing dimensions. In addition to finding the optimal values for the dimensions that give the optimal SNR, simulation results prove that the RIS height is greater than or equal to half the dimension between the sender and the receiver. It is recommended that the RIS height be greater than half the distance between the sender and the receiver.
Rocznik
Tom
Strony
909--914
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- University of Mosul
autor
- University of Mosul
Bibliografia
- [1] J. Wu, D. Lin, G. Li, Y. Liu, Y. Yin, “Distributed Link Scheduling Algorithm Based on Successive Interference Cancellation in MIMO Wireless Networks,” Wireless Communications and Mobile Computing, vol. 2019, 2019. https://doi.org/10.1155/2019/9083282.
- [2] M. A. Suliman, and S. A. Ayoob, “A comparison study between the downlink packet scheduling algorithms in LTE networks,” Al-Rafidain Engineering Journal (AREJ), vol. 23, no. 3, pp. 27-40, 2015. https://doi.org/10.33899/rengj.2015.101568.
- [3] A.N Hammodat, and S.A. Ayoob, “Modelling and simulating of Coordinated Multi-Point (CoMP) technology in LTE-A. Journal of Computer Applications, 182(17), pp. 34-39, 2018. https://doi.org/10.5120/ijca2018917879.
- [4] S. Enoch, and I. Otung, “Performance Improvements in SNR of a Multipath Channel Using OFDM-MIMO,” International Journal of Electronics and Telecommunications, vol. 69, no. 4, pp. 769-773, 2023. https://doi.org/10.24425/ijet.2023.147700.
- [5] F. S. Alsharbaty and S. A. Ayoob, “Intra-site CoMP Operation Effect of Fifth Generation Techniques on 802.16e Downlink Stream,” International Journal of Engineering Trends and Technology, 67(4), pp. 12-17, 2019. https://doi.org/10.14445/22315381/IJETT-V67I4P204.
- [6] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, no. June 2018, pp. 116753-116773, 2019. https://doi.org/10.1109/ACCESS.2019.2935192.
- [7] Z. Zhang et al., “Active RIS vs. Passive RIS: Which Will Prevail in 6G?,” IEEE Trans. Communication, vol. 71, no. 3, pp. 1707-1725, 2023. https://doi.org/10.1109/TCOMM.2022.3231893.
- [8] Y. Wei, M. M. Zhao, M. J. Zhao, and Y. Cai, “Channel Estimation for IRS-Aided Multiuser Communications with Reduced Error Propagation,” IEEE Trans. Wireless. Communication, vol. 21, no. 4, pp. 2725-2741, 2022. https://doi.org/10.1109/TWC.2021.3115161.
- [9] S. A. Ayoob, F. S. Alsharbaty, and A.N Hammodat, “Design and simulation of high efficiency rectangular microstrip patch antenna using artificial intelligence for 6G era,” Telecommunication Computing Electronics and Control, vol. 21, no. 6, pp. 1234-1245, 2023. https://doi.org/10.12928/TELKOMNIKA.v21i6.25389.
- [10] A. A. A. Boulogeorgos and A. Alexiou, “Pathloss modeling of reconfigurable intelligent surface assisted THz wireless systems,” IEEE Int. Conf. Communication., vol. 2, no. January, 2021. https://doi.org/10.1109/ICC42927.2021.9500473.
- [11] Y. Pan, C. Pan, S. Jin, and J. Wang, “RIS-Aided Near-Field Localization and Channel Estimation for the Terahertz System,” IEEE J. Sel. Top. Signal Process., vol. 17, no. 4, pp. 878-892, 2023. https://doi.org/10.1109/JSTSP.2023.3285431.
- [12] M. A. Shawky et al., “Reconfigurable Intelligent Surface-Assisted Cross-Layer Authentication for Secure and Efficient Vehicular Communications,” arXiv, pp. 1-12, 2023. https://doi.org/10.48550/arXiv.2303.08911.
- [13] S. A. Ayoob, F. S. Alsharbaty, and A. K. Alhafid, “Enhancement the heavy file application of 802.16 e cell using intra-site CoMP in uplink stream” Journal of Engineering Science and Technology, 17 (3), 1721-1733, 2022.
- [14] C. Feng, W. Shen, J. An, and L. Hanzo, “Joint Hybrid and Passive RIS-Assisted Beamforming for mmWave MIMO Systems Relying on Dynamically Configured Subarrays,” IEEE Internet Things J., vol. 9, no. 15, pp. 13913-13926, 2022. https://doi.org/10.1109/JIOT.2022.3142932.
- [15] R. A. Abed and S. A. Ayoob, “Millimeter Wave Beams Coordination and Antenna Array Height Effect,” AIP Conference Proceedings, vol. 2830, no. 1, id.040003, pp. 11, 2023. https://doi.org/10.1063/5.0157290.
- [16] A. Al-Rimawi and A. Al-Dweik, “On the Performance of RIS-Assisted Communications with Direct Link Over κ-μ Shadowed Fading,” IEEE Open J. Commun. Soc., vol. 3, no. November, pp. 2314-2328, 2022. https://doi.org/10.1109/OJCOMS.2022.3224562.
- [17] J. Rains et al., “High-Resolution Programmable Scattering for Wireless Coverage Enhancement: An Indoor Field Trial Campaign,” IEEE Trans. Antennas Propag., vol. 71, no. 1, pp. 518-530, 2023. https://doi.org/10.1109/TAP.2022.3216555.
- [18] Y. Bian, D. Dong, J. Jiang, and K. Song, “Performance Analysis of Reconfigurable Intelligent Surface-Assisted Wireless Communication Systems Under Co-Channel Interference,” IEEE Open J. Commun. Soc., vol. 4, no. February, pp. 596-605, 2023. https://doi.org/10.1109/OJCOMS.2023.3244648.
- [19] K. Singh, S. K. Singh, and C. P. Li, “On the Performance Analysis of RIS-Assisted Infinite and Finite Blocklength Communication in Presence of an Eavesdropper,” IEEE Open J. Commun. Soc., vol. 4, no. February, pp. 854-872, 2023. https://doi.org/10.1109/OJCOMS.2023.3262485.
- [20] R. S. P. Sankar and S. P. Chepuri, “Optimal Placement of Active and Passive Elements in Hybrid RIS-assisted Communication Systems,” pp. 1-5, 2023. https://doi.org/10.48550/arXiv.2301.06725.
- [21] Y. Wang, P. Guan, H. Yu, and Y. Zhao, “Transmit Power Optimization of Simultaneous Transmission and Reflection RIS Assisted Full-Duplex Communications,” IEEE Access, vol. 10, pp. 61192-61200, 2022. https://doi.org/10.1109/ACCESS.2022.3179115.
- [22] Q. Wu and R. Zhang, “Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming,” IEEE Trans. Wirel. Commun., vol. 18, no. 11, pp. 5394-5409, 2019, https://doi.org/10.1109/TWC.2019.2936025.
- [23] Q. Chen, M. Li, X. Yang, R. Alturki, M. D. Alshehri, and F. Khan, “Impact of residual hardware impairment on the iot secrecy performance of RIS-assisted NOMA networks,” IEEE Access, vol. 9, pp. 42583-42592, 2021. https://doi.org/10.1109/ACCESS.2021.3065760
- [24] N. Simmons et al., “A Simulation Framework for Cooperative Reconfigurable Intelligent Surface Based Systems,” IEEE Transactions on Communications, vol. 72, no. 1, pp. 1-31, 2023. https://doi.org/10.1109/TCOMM.2023.3282952.
- [25] Y. Wang and J. Peng, “Energy Efficiency Fairness of Active Reconfigurable Intelligent Surfaces-Aided Cell-Free Network,” IEEE Access, vol. 11, no. January, pp. 5884-5893, 2023. https://doi.org/10.1109/ACCESS.2023.3237213.
- [26] Z. Cui, K. Guan, J. Zhang, and Z. Zhong, “SNR Coverage Probability Analysis of RIS-Aided Communication Systems,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3914-3919, 2021. https://doi.org/10.1109/TVT.2021.3063408.
- [27] K. Ntontin, A. A. A. Boulogeorgos, D. G. Selimis, F. I. Lazarakis, A. Alexiou, and S. Chatzinotas, “Reconfigurable Intelligent Surface Optimal Placement in Millimeter-Wave Networks,” IEEE Open J. Commun. Soc., vol. 2, pp. 704-718, 2021. https://doi.org/10.1109/OJCOMS.2021.3068790.
- [28] K. Ntontin, A. A. A. Boulogeorgos, D. G. Selimis, F. I. Lazarakis, A. Alexiou, and S. Chatzinotas, “Reconfigurable Intelligent Surface Optimal Placement in Millimeter-Wave Networks,” IEEE Open J. Communications. Soc., vol. 2, no. March, pp. 704-718, 2021. https://doi.org/10.1109/OJCOMS.2021.3068790.
- [29] K. Ntontin, D. Selimis, A. A. A. Boulogeorgos, A. Alexandridis, A. Tsolis, V. Vlachodimitropoulos, and Fotis Lazarakis,” Optimal Reconfigurable Intelligent Surface Placement in Millimeter-Wave Communications,” 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, pp. 1-5, 2021. https://doi.org/10.23919/EuCAP51087.2021.9411076.
- [30] G. C. Trichopoulos et al., “Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment,” IEEE Open J. Commun. Soc., vol. 3, no. February, pp. 462-474, 2022. https://doi.org/10.1109/OJCOMS.2022.3158310.
- [31] G. Stratidakis, S. Droulias, and A. Alexiou, “Analytical Performance Assessment of Beamforming Efficiency in Reconfigurable Intelligent Surface-Aided Links,” IEEE Access, vol. 9, pp. 115922-115931, 2021. https://doi.org/10.1109/ACCESS.2021.3105477.
- [32] G. Brancati, O. Chukhno, N. Chukhno, and G. Araniti, “Reconfigurable Intelligent Surface Placement in 5G NR/6G: Optimization and Performance Analysis,” IEEE Int. Symp. Pers. Indoor Mob. Radio Communications PIMRC, vol. 2022-Septe, no. 6, 2022. https://doi.org/10.1109/PIMRC54779.2022.9978019.
- [33] S. Zeng, H. Zhang, B. Di, Z. Han, and L. Song, “Reconfigurable Intelligent Surface (RIS) Assisted Wireless Coverage Extension: RIS Orientation and Location Optimization,” IEEE Communications. Letters., vol. 25, no. 1, pp. 269-273, 2021. https://doi.org/10.1109/LCOMM.2020.3025345.
- [34] K. Ntontin et al., “Wireless Energy Harvesting for Autonomous Reconfigurable Intelligent Surfaces,” IEEE Transactions Green Communication. Netw., vol. 7, no. 1, pp. 114-129, 2023. https://doi.org/10.1109/TGCN.2022.3201190.
- [35] Y. Ren et al., “On Deployment Position of RIS in Wireless Communication Systems: Analysis and Experimental Results,” IEEE Wireless Communications Letters, vol. 12, no. 10, pp. 1756-1760, 2023. https://doi.org/10.1109/LWC.2023.3292125.
- [36] I. Yildirim, A. Uyrus, and E. Basar, “Modeling and Analysis of Reconfigurable Intelligent Surfaces for Indoor and Outdoor Applications in Future Wireless Networks,” IEEE Transactions on Communications, vol. 69, no. 2, pp. 1290-1301, 2021. https://doi.org/10.1109/TCOMM.2020.3035391.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0372ded-7bd1-4f64-9c25-266435ad2601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.