PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of elevated pressure on gas-solid flow properties in a powder feeding system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In view of the powder feeding system, a multi-physical coupling model of the gas-powder-piston was established based on the Euler-Euler two-fluid model. The numerical simulation method was applied to explore the effects of dense gas-solid flow characteristics under different operating pressures. The results show that gas-solid pulsations at different operating pressures are mainly concentrated in the upper part of the powder tank. An elevated operating pressure efficiently decreases the powder layer area (εp = 0.1) fluctuation. As the operating pressure increases from 0.5 MPa to 3.0 MPa, the rising time and fluctuation rate of pressure are reduced by 71.4% and 62.3%, respectively, and the pressure in the tank has a long stabilization period. Meanwhile, the variation of the instantaneous powder flow rate is more stable and its average value is closer to the theoretical. A high-pressure environment is more conducive to the stable transportation of powder.
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wz.
Twórcy
autor
  • School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • Jiangxi Key Laboratory of Micro Aero-engine, Nanchang 330063, China
autor
  • School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • Jiangxi Key Laboratory of Micro Aero-engine, Nanchang 330063, China
autor
  • School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • Jiangxi Key Laboratory of Micro Aero-engine, Nanchang 330063, China
autor
  • Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
Bibliografia
  • 1. Du, Z., Huang, W. & Yan, L. (2020). Investigation on the supplementary combustion scheme for the divergent section of a solid rocket engine nozzle. Energy 190, 116295. DOI: 10.1016/j.energy.2019.116295.
  • 2. Elfasakhany, A. (2021). Investigation of biomass powder as a direct solid biofuel in combustion engines: Modelling assessment and comparisons. Ain. Shams. Eng. J. 12 (3), 2991–2998. DOI: 10.1016/j.asej.2021.03.005.
  • 3. Li, C., Hu, C., Xin, X., Li, Y. & Sun, H. (2016). Experimental study on the operation characteristics of aluminum powder fueled ramjet. Acta Astronautica 129, 74–81. DOI: 10.1016/j.actaastro.2016.08.032.
  • 4. Li, W., Chen, X., Zhao, D., Wang, B., Ma, K. & Cai, T. (2020). Swirling effect on thermodynamic performance in a solid fueled ramjet with paraffin-polyethylene. Aerosp. Sci. Technol. 107, 106341. DOI: 10.1016/j.ast.2020.106341.
  • 5. Li, Y., Hu, C., Deng, Z., Li, C., Sun, H. & Cai, Y. (2017). Experimental study on multiple-pulse performance characteristics of ammonium perchlorate/aluminum powder rocket motor. Acta Astronautica 133, 455–466. DOI: 10.1016/j.actaastro.2016.11.014.
  • 6. Li, M., Hu, C., Wang, Z., Li,. Y., Hu, J., Hu, X. & Li, C. (2022). Application and performance estimation of Mg/CO2 engine on Mars. Acta Astronautica 192, 314–327. DOI: 10.1016/j.actaastro.2021.12.032.
  • 7. Wei, R., Hu, C., Wu, F., Hu, J., Zhu, X., Yang, J., Li, F. & Li, C. (2021). Heat-transfer characteristics of CO2 boiling flow in the regenerative cooling channel of an Mg/CO2 powder rocket engine for Mars missions. Acta Astronautica 189, 43–54. DOI: 10.1016/j.actaastro.2021.08.010.
  • 8. Miller, T., Walter, J. & Kiely, D. (2002). A next-generation AUV energy system based on aluminum-seawater combustion. Workshop on Autonomous Underw. Vehicles 111–119. DOI: 10.1109/AUV.2002.1177213.
  • 9. Yang, Y. & He, M. (2012). Numerical study on operating characteristics of a magnesium-based fuel ramjet. Acta Astronautica 79, 96–106. DOI: 10.1016/j.actaastro.2012.04.027.
  • 10. Adnan, M., Sun, J., Ahmad, N. & Wei, J. (2021). Verification and validation of the DDPM-EMMS model for numerical simulations of bubbling, turbulent and circulating fluidized beds. Powder Technol. 379, 69–88. DOI: 10.1016/j.powtec.2020.10.041.
  • 11. Chen, M., Chen, Z., Gong, M., Tang, Y. & Liu, M. (2021). CFD–DEM–VDGM method for simulation of particle fluidization behavior in multi-ring inclined-hole spouted fluidized bed. Particuology 57, 112–126. DOI: 10.1016/j.partic.2021.01.004.
  • 12. Fricke, H. & Sobieniak, M. (1970). Fluidized Powders—A New Approach to Storable Missile Fuels[C]. Denver: 12th JANNAF Liquid Propulsion Meeting.
  • 13. Meyer, M. (1993). Powdered aluminum and oxygen rocket propellants: Subscale combustion experiments. NASA-TM-1993-106439.
  • 14. Foote, J. & Litchford, R. (2005). “Powdered Magnesium: Carbon Dioxide Combustion for Mars Propulsion”. AIAA-2005-4469. DOI: 10.2514/6.2005-4469.
  • 15. Miller, T. & Herr, J. (2004). Green Rocket Propulsion by Reaction of Al and Mg Powders and Water. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. DOI: 10.2514/6.2004-4037.
  • 16. Cai, L., Liu, S., Pan, X., Xu, G., Chen, X. & Zhao, C. (2014). Influence of carbonaceous powders on flow characteristics of dense-phase pneumatic conveying at high pressure. Exp. Therm. Fluid Sci. 58 (4), 121–130. DOI: 10.1016/j.expthermflusci.2014.06.020.
  • 17. Song, J., Liu, D., Ma, J. & Chen, X. (2018). Effect of elevated pressure on bubble properties in a two-dimensional gas–solid fluidized bed. Chem. Eng. Res. Des. 138, 21–31. DOI: 10.1016/j.cherd.2018.08.012.
  • 18. Liu, D., Hu, J., Song, J., Liang, C. & Chen, X. (2020). Effect of elevated pressure on gas-solid flow characteristics in a circulating fluidized bed. Powder Technol. 366, 470–476. DOI: 10.1016/j.powtec.2020.02.046.
  • 19. Shabanian, J. & Chaouki, J. (2016). Effects of temperature, pressure, and interparticle forces on the hydrodynamics of a gas-solid fluidized bed. Chem. Eng. J. 313, 580–590. DOI: 10.1016/j.cej.2016.12.061.
  • 20. Sun, H., Hu, C. & Zhu, X. (2017). Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure. Acta Astronautica 139 (10), 85–97. DOI: 10.10164/j.actaastro.2017.06.030.
  • 21. Sun, H., Hu, C., Zhang, T. & Deng, Z. (2016). Experimental investigation on mass flow rate measurements and feeding characteristics of powder at high pressure. Appl. Therm. Eng. 102, 30–37. DOI: 10.1016/j.applthermaleng.2016.03.142.
  • 22. Shao, Y., Li, Z., Zhong, W., Bian, Z. & Yu, A. (2020). Minimum fluidization velocity of particles with different size distributions at elevated pressures and temperatures. Chem. Eng. Sci. 216. 115555. DOI: 10.1016/j.ces.2020.115555.
  • 23. Yang, J., Hu, C., Qiang, W., Hu, J., Hu, X. & Zhu, X. (2021). Experimental investigation on the starting and flow regulation characteristics of powder supply system for powder engines. Acta Astronautica 180, 73–84. DOI: 10.1016/j.actaastro.2020.12.004.
  • 24. Kuipers, J., Van, Duin, K., Van, Beckum, F. & Van, Swaaij, W. (1992). A numerical model of gas-fluidized beds. Chem. Eng. Sci. 47 (8), 1913–1924. DOI: 10.1016/0009-2509(92)80309-Z.
  • 25. Gidaspow, D. (1994). Multiphase flow and fluidization: Continuum and kinetic theory descriptions, published by Academic Press. San Diego. 83 (3), 287. DOI: 10.1016/0032-5910(95)90055-1.
  • 26. Plewik, R., Synowiec, P. & Wójcik, J. (2008). Two-phase CFD simulation of the monodyspersed suspension hydraulic behaviour in the tank apparatus from a circulatory pipe. Polish J. Chem. Technol. 10 (1), 22–27. DOI: 10.2478/v10026-008-0006-6.
  • 27. Zhu, X., Dong, P., Tu, Q., Zhu, Z., Yang, W. & Wang, H. (2020). Investigation of gas-solids flow characteristics in a pressurised circulating fluidised bed by experiment and simulation. Powder Technol. 366, 420–433. DOI: 10.1016/j.powtec.2020.02.047.
  • 28. Alder, B. & Wainwright, T. (1960). Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres. J. Chem. Phys. 33 (5). 1349–1451. DOI: 10.1063/1.1731425.
  • 29. Gidaspow, J. (1990). A bubbling fluidization model using kinetic theory of granular flow. AIChE. J. 36 (4), 523–538. DOI: 10.1002/aic.690360404.
  • 30. Nieuwland, J., Sint,, A., Kuipers, J. & Wpm, S. (1996). Hydrodynamic modelling of gas-particle flows in riser reactors. AlChE. J. 42 (6). DOI: 10.1002/aic.690420608.
  • 31. Huilin, L., Gidaspow, D., Bouillard, J. & Wentie, L. (2003). Hydrodynamic simulation of gas–solid flow in a riser using kinetic theory of granular flow. Chem. Eng. J. 95 (1), 1–13. DOI: 10.1016/S1385-8947(03)00062-7.
  • 32. Du, W., Bao, X., Xu, J. & Wei, W. (2006). Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations. Chem. Eng. Sci. 61 (5), 1401–1420. DOI: 10.1016/j.ces.2005.08.013.
  • 33. Panneerselvam, R., Savithri, S. & Surender, G. (2007). CFD based investigations on hydrodynamics and energy dissipation due to solid motion in liquid fluidised bed. Chem. Eng. J. 132 (1), 159–171. DOI: 10.1016/j.cej.2007.01.042.
  • 34. Behjat, Y., Shahhosseini, S. & Hashemabadi, S. (2008). CFD modeling of hydrodynamic and heat transfer in fluidized bed reactors. Int. Commun. Heat Mass Transf. 35 (3), 357–368. DOI: 10.1016/j.icheatmasstransfer.2007.09.011.
  • 35. Jie, L. & Kuipers, J. (2002). Effect of pressure on gas–solid flow behavior in dense gas-fluidized beds: a discrete particle simulation study. Powder Technol. 127 (2), 173–184. DOI: 10.1016/S0032-5910(02)00116-X.
  • 36. Rongtao, F., Junguo, L., Libo, D., Zhenhua, H., Zhongren, B., Haijuan, Z. & Yitian, F. (2018). Gas-solid flow behaviors in a multi-stage circulating fluidized bed under elevated pressure. Chem. Eng. Sci. 196, 1–13. DOI: 10.1016/j.ces.2018.11.057.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d036ac1b-07ea-4795-b3b7-5f7c409240b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.