PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polimery oraz makrocząsteczki posiadające podstawnik pentafluorosulfanylowy, -SF5 : synteza, struktura, właściwości i zastosowanie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Polymers and macromolecules containing pentafluorosulfanyl, -SF5 substituent : synthesis, structure, properties and application
Języki publikacji
PL
Abstrakty
EN
The pentafluorosulfanyl (-SF5) moiety is a lesser known and underutilized functional group that displays high electronegativity, chemical and thermal stability, and low surface energy, among other useful properties. As a substituent it is known for almost 60 years, however practical application of the unique -SF5 group in various areas of chemistry has only recently picked up, mostly due to longstanding challenges associated with its synthetic accessibility. Most of the latest attention involving the use of -SF5 has been in medicinal chemistry, but it has also started to feature much more frequently in functional materials design, especially in the area of optoelectronic materials. This review will describe polymers and macromolecules containing -SF5 substituent which has been introduced mainly at the monomer stage.
Rocznik
Strony
231--254
Opis fizyczny
Bibliogr. 86 poz., schem.
Twórcy
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
Bibliografia
  • [1] P.R. Savoie, J.T. Welch, Chem. Rev., 2015, 115, 1130.
  • [2] W.A. Sheppard, J. Am. Chem. Soc., 1962, 84, 3072.
  • [3] W.A. Sheppard, J. Am. Chem. Soc., 1962, 84, 3064.
  • [4] M.F. Sowaileh, R.A. Hazlitt, D.A. Colby, ChemMedChem., 2017, 12, 1481.
  • [5] B. Stump, C. Eberle, W.B. Schweizer, M. Kaiser, R. Brun, R.L. Krauth-Siegel, D. Lentz, F. Diederich, ChemBioChem. 2009, 10, 79.
  • [6] R.D. Bowden, P.J. Comina, M.P. Greenhall, B.M. Kariuki, A. Loveday, D. Philp, Tetrahedron., 2000, 56, 3399.
  • [7] S. Altomonte, M. Zanda, J. Fluor. Chem., 2012, 143, 57.
  • [8] T. Mo, X. Mi, E.E. Milner, G.S. Dow, P. Wipf, Tetrahedron Lett., 2010, 51, 5137.
  • [9] J.T. Welch, D.S. Lim, Bioorganic Med. Chem., 2007, 15, 6659.
  • [10] P. Kirsch, Modem fluoroorganic chemistry: synthesis, reactivity, applications, Wiley, Weinheim, 2013.
  • [11] L.J. Saethre, N. Berrah, J.D. Bozek, K.J. Biarve, T.X. Carroll, E. Kukk. G.L. Gard, R. Winter, T.D. Thomas, J. Am. Chem. Soc., 2001, 123, 10729.
  • [12] O. Exner, S. Böhm, New J. Chem., 2008, 32, 1449.
  • [13] A.E. Reed, P. Von Ragué Schleyer, J. Am. Chem. Soc., 1990,112, 1434.
  • [14] J.T.E. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, J. Mater. Chem. C., 2017, 5, 8654.
  • [15] Z.G. Zhang, J. Wang, J. Mater. Chem., 2012, 22, 4178.
  • [16] M. Anthony, Aust N. Z. Med., 1984, 14, 888.
  • [17] D.S. Lim, J.S. Choi, C.S. Pak, J.T. Welch, J. Pestic. Sci., 2007, 32, 255.
  • [18] P. Wipf, T. Mo, S.J. Geib, D. Caridha, G.S. Dow, L. Gerena, N. Roncal, E.E. Milner, Org. Biomol. Chem., 2009, 7, 4163.
  • [19] R. Gujjar, F. El Mazouni, K.L. White, J. White, S. Creason, D.M. Shackleford, X. Deng, W.N. Charman, I. Bathurst, J. Burrows, D.M. Floyd, D. Matthews, F.S. Buckner, S.A. Charman, M.A. Phillips, P.K. Rathod, J. Med. Chem., 2011, 54, 3935.
  • [20] J.M.W. Chan, S.E. Kooi, T.M. Swager, Macromolecules, 2010, 43, 2789.
  • [21] J. Du, G. Hua, P. Beier, A.M.Z. Slawin, J.D. Woollins, Struct. Chem., 2017, 28, 723.
  • [22] G. Hua, J. Du, A.M.Z. Slawin, J.D. Woollins, Synlett, 2014, 25, 2189.
  • [23] X. Xu, K. Fukuda, A. Karki, S. Park, H. Kimura, H. Jinno, N. Watanabe, S. Yamamoto, S. Shimomura, D. Kitazawa, T. Yokota, S. Umezu, T.Q. Nguyen, T. Someya, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 4589.
  • [24] B. Duda, D. Lentz, Org. Biomol. Chem., 2015, 13, 5625.
  • [25] K. Seppelt, Chem. Rev., 2015, 115, 1296.
  • [26] A.R. Ravishankara, S. Solomon, A.A. Turnipseed, R.F. Warren, Science, 1993, 259, 194.
  • [27] D.A. Jackson, S.A. Mabury, Environ. Toxicol. Chem., 2009, 28, 1866.
  • [28] A.M. Sipyagin, C.P. Bateman, Y.T. Tan, J.S. Thrasher, J. Fluor. Chem., 2001, 112, 287.
  • [29] A.M. Sipyagin, V.S. Enshov, S.A. Kashtanov, C.P. Bateman, B.D. Mullen, Y.T. Tan, J.S. Thrasher, J. Fluor. Chem., 2004, 125, 1305.
  • [30] T. Umemoto, L.M. Garrick, N. Saito, Beilstein J. Org. Chem., 2012, 8, 461.
  • [31] O.S. Kanishchev, W.R. Dolbier, Angew. Chemie - Int. Ed., 2015, 54, 280.
  • [32] C.R. Pitts, D. Bornemann, P. Liebing, N. Santschi, A. Togni, Angew. Chemie - Int. Ed., 2019, 58, 1950.
  • [33] J.M.W. Chan, J. Mater. Chem. C., 2019, 7, 12822.
  • [34] J. Wolska, J. Walkowiak-Kulikowska, A. Szwajca, H. Koroniak, B. Ameduri, B. Améduri, RSC Adv., 2018, 8, 41836.
  • [35] G. Zhang, Y.J. Lee, P. Gautam, C.C. Lin, C.L. Liu, J.M.W. Chan, J. Mater. Chem. C. 2019, 7, 7865.
  • [36] G. Kostov, B. Ameduri, T. Sergeeva, W.R. Dolbier, R. Winter, G.L. Gard, Macromolecules, 2005, 38, 8316.
  • [37] F. Van Duijnhoven, C.W.M. Bastiaansen, F.G.H. Van Duijnhoven, Adv. Mater., 1999, 11, 567.
  • [38] G. Pan, A.S. Tse, R. Kesavamoorthy, S.A. Asher, J. Am. Chem. Soc., 1998, 120, 6518.
  • [39] E. Hałasa, Polimery, 2003, 48, 171.
  • [40] A.K. St. Clair, T.L. St. Clair, US Patent 5 302 692, 1994.
  • [41] R.W. Winter, R. Dodean, L. Holmes, G.L. Gard, J. Fluor. Chem., 2004, 125, 37.
  • [42] J.C. Hansen, P.M. Savu, US Patent 5 159 105, 1992.
  • [43] J.C. Hansen, P.M. Savu, US Patent 5 286 352, 1994.
  • [44] R. Winter, P.G. Nixon, G.L. Gard, D.G. Castner, N.R. Holcomb, Y.H. Hu, D.W. Grainger, Chem. Mater., 1999, 11, 3044.
  • [45] R. Winter, P.G. Nixon, R.J. Terjeson, J. Mohtasham, N.R. Holcomb, D.W. Grainger, D. Graham, D.G. Castner, G.L. Gard, J. Fluor. Chem., 2002, 115, 107.
  • [46] W. Szlezyngier, Z.K. Brzozowski, Tworzywa Sztuczne, Fosze, Rzeszów, 2012.
  • [47] A.D. Berry, W.B. Fox, J. Fluor. Chem., 1975, 6, 175.
  • [48] P.G. Nixon, R. Winter, D.G. Castner, N.R. Holcomb, D.W. Grainger, G.L. Gard, Chem. Mater., 2000, 12, 3108.
  • [49] R.W. Winter, S.W. Winner, D.A. Preston, J. Mohtasham, J.A. Smith, G.L. Gard, J. Fluor. Chem., 2002, 115, 101.
  • [50] R. Geballe, F.S. Linn, J. Appl. Phys., 1950, 21, 592.
  • [51] A.F. Clifford, H.K. El-Shamy, H.J. Emeleus, R.N. Haszeldine, J. Chem. Soc., 1953, 2372.
  • [52] R. Winter, G.L. Gard, Inorg. Chem., 1988, 27, 4329.
  • [53] J. Mohtasham, R.J. Terjeson, G.L. Gard, R.A. Scott, K. V. Madappat, J.S. Thrasher, Inorganic Synthesis, Wiley, Hoboken, 1992.
  • [54] S. Aït-Mohand, W.R. Dolbier, Org. Lett., 2002, 4, 3013.
  • [55] C. Boyer, B. Ameduri, B. Boutevin, W.R. Dolbier, R. Winter, G. Gard, Macromolecules, 2008, 41, 1254.
  • [56] R.E. Banks, R.N. Haszeldine, British Patent, 1 145 263, 1969.
  • [57] R.E. Banks, M.G. Barlow, R.N. Haszeldine, W.D. Morton, J. Chem. Soc. Perkin Trans. 1., 1974, 1266.
  • [58] G. Kostov, B. Ameduri, T. Sergeeva, W.R. Dolbier, R. Winter, G.L. Gard, Macromolecules, 2005, 38, 8316.
  • [59] H. Kawa, S.N. Partovi, B.J. Ziegler, R.J. Lagow, J. Polym. Sci. Part C, Polym. Lett., 1990, 28, 297.
  • [60] H. Koezuka, A. Tsumura, T. Anado, J. Chem. Inf. Model. 1987, 18, 699.
  • [61] I. Lim, S.J. Yoon, W. Lee, Y.C. Nah, N.K. Shrestha, H. Ahn, S.H. Han, ACS Appl. Mater. Interfaces, 2012, 4, 838.
  • [62] A.M. Glaudell, J.E. Cochran, S.N. Patel, M.L. Chabinyc, Adv. Energy Mater., 2014, 1401072.
  • [63] K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, D.P. Amalnerkar, Mater. Chem. Phys., 1999, 61, 173.
  • [64] A. Tsumura, H. Koezuka, T. Ando, Synth. Met., 1988, 25, 11.
  • [65] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett., 1986, 49, 1210.
  • [66] S. Zahn, A.F. Nordquist, K.E. Minnich, G.S. Lal, W.F. Burgoyne, Jr., A. Klauck-Jacobs, United States Patent 7 094 365 B2, 2006.
  • [67] S. Zahn, A.F. Nordquist, K.E. Minnich, G.S. Lal, W.F. Burgoyne, Jr., A. Klauck-Jacobs, United States Patent 7 241 904 B2, 2007.
  • [68] S. Zahn, A.F. Nordquist, K.E. Minnich, G.S. Lal, W.F. Burgoyne, Jr., A. Klauck-Jacobs, United States Patent 7 060 846 B2, 2006.
  • [69] A. Nakajima, D. Fujii, M. Uchino, Appl. Phys. Lett., 2013, 103, 013302.
  • [70] L.W. Tutt, T.F. Boggess, Prog. Quantum Electron., 1993, 17, 299.
  • [71] D. Kronholm, J.C. Hummelen, Mater. Matters., 2007, 2, 16.
  • [72] N. Zhang, Y. Zhang, M.Q. Yang, Z.R. Tang, Y.J. Xu, J. Catal., 2013, 299, 210.
  • [73] T. Umeyama, H. Imahori, J. Mater. Chem. A., 2014, 2, 11545.
  • [74] A. Cravino, Nat. Mater., 2003, 2, 360.
  • [75] J. Sakai, K. Kawano, T. Yamanari, T. Taima, Y. Yoshida, A. Fujii, M. Ozaki, Sol. Energy Mater. Sol. Cells., 2010, 94, 376.
  • [76] C.-Z. Li, C.-Y. Chang, Y. Zang, H.-X. Ju, C.-C. Chueh, P.-W. Liang, N. Cho, D.S. Ginger, A.K.-Y. Jen, Adv. Mater., 2014, 26, 6262.
  • [77] C.M. Varma, J. Zaanen, K. Raghavachari, Science, 1991, 254, 989.
  • [78] A.F. Hebard, Phys. Today, 1992, 45, 26.
  • [79] S. Margadonna, K. Prassides, J. Solid State Chem. 2002, 168, 639.
  • [80] A. Al-Mohamad, A.W. Allaf, Synth. Met., 1999, 104, 39.
  • [81] L. Dai, J. Macromol. Sci. - Polym. Rev., 1999, 39, 273.
  • [82] B.C. Yadav, R. Kumar, Int. J. Nanotechnol. Appl., 2008, 2, 15.
  • [83] A.A. Popov, I.E. Kareev, N.B. Shustova, E.B. Stukalin, S.F. Lebedkin, K. Seppelt, S.H. Strauss, O. V. Boltalina, L. Dunsch, J. Am. Chem. Soc., 2007, 129, 11551.
  • [84] C. Cui, Y. Li, Y. Li, Adv. Energy Mater., 2016, 7, 1601251.
  • [85] T.T. Clikeman, T. Schmaltz, M. Halik, A. Hirsch, S.H. Strauss, O. V. Boltalina, ECS J. Solid State Sci. Technol., 2017, 6, 3163.
  • [86] S.Y. Qing, N.J. DeWeerd, A. V. Matsnev, S.H. Strauss, J.S. Thrasher, O. V. Boltalina, J. Fluor. Chem., 2018, 211, 52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d033342f-68b6-42d0-b21d-77a4a777302e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.