PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Growing odd graphs and asymptotic distribution in a deformed vacuum state

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the asymptotic distribution of odd graphs in a deformed vacuum state, focusing on the spectral analysis of these graphs. We explore the adjacency matrices of odd graphs and derive explicit expressions for their mean and variance in the deformed vacuum state. Our main results provide the probability measures and the corresponding coherent states for the distribution of these graphs. We calculate the Jacobi coefficients and Cauchy transforms related to these distributions, which have not been addressed explicitly in the existing literature. Our findings contribute to a deeper understanding of the probabilistic and spectral properties of odd graphs in quantum state frameworks.
Rocznik
Strony
199 --210
Opis fizyczny
Bibliogr.12 poz.
Twórcy
  • Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, 80010, Culiacán, Sinaloa, Mexico
Bibliografia
  • [1] O. Arizmendi and V. Perez-Abreu, The S-transform of symmetric probability measures with unbounded supports, Proc. Amer. Math. Soc. 137 (2009), 3057-3066.
  • [2] M. Bożejko, B. Kümmerer and R. Speicher, q-Gaussian processes: Non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), 129-154.
  • [3] Y. Hashimoto, Deformations of the semicircle law derived from random walks on free groups, Probab. Math. Statist. 18 (1998), 399-410.
  • [4] Y. Hashimoto, Quantum decomposition in discrete groups and interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Related Topics 4 (2001), 277-287.
  • [5] Y. Hashimoto, A. Hora and N. Obata, Central limit theorems for large graphs: Method of quantum decomposition, J. Math. Phys. 44 (2003), 71-88.
  • [6] Y. Hashimoto, N. Obata and N. Tabei, A quantum aspect of asmptotic spectral analysis of large Hamming graphs, in: Quantum Information III, World Sci., River Edge, NJ, 2001, 45-57.
  • [7] F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy, Math. Surveys Monogr. 77, Amer. Math. Soc., Providence, 2000.
  • [8] A. Hora, Gibbs state on a distance-regular graph and its application to a scaling limit of the pectral distributions of discrete Laplacians, Probab. Theory Related Fields 118 (2000), 115-130.
  • [9] A. Hora, Scaling limit for Gibbs states for Johnson graphs and resulting Meixner classes, Infin. Dimens. Anal. Quantum Probab. Related Topics 6 (2003), 139-143.
  • [10] A. Hora and N. Obata, Quantum Probability and Spectral Analysis of Graphs, Springer, 2007.
  • [11] D. Igarashi and N. Obata, Asymptotic spectral analysis of growing graphs: odd graphs and spidernets, in: Banach Center Publ. 73, 2006, 245-265.
  • [12] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, 1932.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d03136b7-b227-4043-8136-24fd67a73a27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.