PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Diversity and Composition of Rhizosphere Fungal Community in Pure and Mixed Forests of South China

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rhizosphere fungal communities are of critical importance for forest health. Microbial diversity varies with forest types due to tree species. In order to examine the influence of forest types and species composition on fungal community diversity in rhizosphere soil, the field sampling was conducted in the pure and mixed forest stands of Castanopsis hystrix in a subtropical region of China. Soil samples were taken from four forest types: Castanopsis hystrix pure forests (CH), Castanopsis hystrix × Pinus elliottii mixed forests (CHPE), Castanopsis hystrix × Michelia macclurei mixed forests (CHMM), and Castanopsis hystrix × Mytilaria laosensis mixed forests (CHML), and the species composition and structure of rhizosphere fungal community were examined by using high-throughput sequencing approach for 18S rRNA genes. The results showed that the amount of OTUs (operational taxonomic units) were 288, 331, 334 and 293 in CHML, CHMM, CHPE and CH stands, respectively, and these fungal communities were affiliated with 13 phyla, 28 classes, 85 orders, 87 families, and 131 genera. The fungal diversity was greater in CHMM and CHPE stands than in CH stands. The compositions were similar in CHMM and CHPE stands while those were significantly different in CHML and CH stands. The cladograms and co-expression network analysis showed that Ascomycota, Basidiomycota, Mortierellomycota and Rozellomycota were the dominant phyla. The study results implied that mixed forests might have a high potential for improving the microbial community diversity with formation of key species of microbial taxa due to the favorable microclimate and quality of litter composition occuring in mixed forests.
Rocznik
Strony
111--123
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Hunan international economics university, 822 Fenglin 3rd Road, Yuelu District, Changsha, Hunan, 410000, China
autor
  • Guangxi Key Laboratory of Superior Trees Resource Cultivation, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, 530000, China
autor
  • Guangxi Key Laboratory of Superior Trees Resource Cultivation, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, 530000, China
autor
  • Guangxi Key Laboratory of Superior Trees Resource Cultivation, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, 530000, China
autor
  • Guangxi Key Laboratory of Superior Trees Resource Cultivation, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, 530000, China
  • Guangxi Key Laboratory of Superior Trees Resource Cultivation, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, 530000, China
autor
  • Guangxi Key Laboratory of Superior Trees Resource Cultivation, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, 530000, China
Bibliografia
  • 1. Aeosta-Martinez V., Tabatabai M.A. 2002 - Inhibition of arylamidase activity on soil by toluene - Soil Biol. Biochem. 34: 229-237.
  • 2. Aponte C., García L.V., Maraón T., Gardes M. 2009 - Indirect host effect on ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks - Soil Biol. Biochem. 42: 788-796.
  • 3. Babujia L.C., Hungria M., Franchini J.C., Brookes P.C. 2010 - Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage - Soil Biol. Biochem. 42: 2174-2181.
  • 4. Banerjee S., Kirkby C.A., Schmutter D., Bissett A., Kirkegaard J.A., Richardson A.E. 2016 - Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil - Soil Biol. Biochem. 97: 188-198.
  • 5. Bindschedler S., Cailleau G., Verrecchia E. 2016 - Role of fungi in the biomineralization of calcite - Minerals, 6: 41.
  • 6. Bravo-Oviedo A., Pretzsch H., Ammer C., Andenmatten E., Barbati A., Barreiro S., Brang P., Bravo F. 2014 - European mixed forests: Definition and research perspectives - Forest Syst. 23: 518-533.
  • 7. Brazee N.J., Lindner D.L., D'Amato A.W., Fraver S., Forrester J.A., Mladenoff D.J. 2014 - Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris - Biodivers. Conserv. 23: 2155-2172.
  • 8. Brundrett M.C., Tedersoo L. 2018 - Evolutionary history of mycorrhizal symbioses and global host plant diversity - New Phytol. 220: 1108-1115.
  • 9. Carney K.M., Matson P.A. 2006 - The influence of tropical plant diversity and composition on soil microbial communities - Microb.Ecol. 52: 226-238.
  • 10. Cassart B., Basia A.A., Jonard M., Ponette Q. 2020 - Average leaf litter quality drives the decomposition of single-species, mixed-species and transplanted leaf litters for two contrasting tropical forest types in the Congo Basin (DRC) - Ann. For. Sci. 77: 1-20.
  • 11. Chen L., Jia H.Y., Dell B., Guo W.F., Cai D.X., Zeng J. 2016 - Responses of Castanopsis hystrix seedlings to macronutrient imbalances: Growth, photosynthetic pigments and foliar nutrient interactions - J. Plant Nutr. 39: 1663-1671.
  • 12. Chen X., Gao J.G., Zhao P., Mccarthy H.R. 2018 - Tree species with photosynthetic stems have greater night time sap flux - Front. Plant Sci. 9: 30.
  • 13. Conn C., Dighton J. 2000 - Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity - Soil Biol. Biochem. 32: 489-496.
  • 14. Edgar R.C. 2010 - Search and clustering orders of magnitude faster than BLAST - Bioinformatics, 26: 2460-2461.
  • 15. Friedman J., Alm E.J. 2012 - Inferring correlation networks from genomic survey data - PLoS Comput. Biol. 8: e1002687.
  • 16. Gams W. 1977 - A key to the species of Mortierella - Persoonia, 9: 381-391.
  • 17. Goldmann K., Schöning I., Buscot F., Wubet T. 2015 - Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems - Front. Microbiol. 6: 1300.
  • 18. Hackl E., Pfeffer M., Donat C., Bachmann G., Zechmeister-Boltenstern S. 2005 - Composition of the microbial communities in the mineral soil under different types of natural forest - Soil Biol. Biochem. 37: 661-671.
  • 19. He Y., Qin L., Li Z., Liang X., Shao M., Tan L. 2013 - Carbon storage capacity of monoculture and mixed-species plantations in subtropical China - For. Ecol. Manage. 295: 193-198.
  • 20. Hill G.T., Mitkowski N.A., Aldrich-Wolfe L., Emelea L.R., Jurkoniea D.D., Fickea A., Maldonado-Ramireza S., Lyncha S.T., Nelsona E.B. 2000 - Methods for assessing the composition and diversity of soil microbial communities - Appl. soil Ecol. 15: 25-36.
  • 21. Hu H., Jiang C., Wu Y.P., Cheng Y.X. 2017 - Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting - Microbiol. 6:e00518.
  • 22. Johnson J.M., Ludwig A., Furch A.C.U., Mithöfer A., Scholz S., Reichelt M., Oelmüller R. 2019 - The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of arabidopsis and activates calcium-dependent responses that restrict alternaria brassicaeinduced disease development in roots - Mol. Plant Microbe Interact, 32: 351-363.
  • 23. Ju F., Xia Y., Guo F., Wang Z.P., Zhang T. 2014 - Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants - Environ. Microbiol. 16: 2421-2432.
  • 24. Kowalchuk G.A., Buma D.S., de Boer W., Klinkhamer P.G.L., van Veen J.A. 2002 - Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms - Antonie van leeuwenhoek, 81: 509-520.
  • 25. Kubartová A., Ranger J., Berthelin J., Beguiristain T. 2009 - Diversity and Decomposing Ability of Saprophytic Fungi from Temperate Forest Litter - Microb. Ecol. 58: 98-107.
  • 26. Larpin-Laborde S., Imran M., Bonaïti C., Bora N., Gelsomino R., Goerges S., Irlinger F., Goodfellow M., Ward A.C., Vancanneyt M. 2011 - Surface microbial consortia from Livarot, a French smear-ripened cheese - Can. J. Microbiol. 57: 651-660.
  • 27. Li F., Chen L., Redmile-Gordon M., Zhang J., Zhang C., Ning Q., Li W. 2018 - Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil - Land Degrad. Dev. 29: 1642-1651.
  • 28. Li W.Q., Huang Y.X., Chen F.S., Liu Y.Q., Lin X.F., Zong Y.Y., Wu G.Y., Yu Z.R., Fang X.M. 2021 - Mixing with broad-leaved trees shapes the rhizosphere soil fungal communities of coniferous tree species in subtropical forests - For. Ecol. Manag. 480: 118664.
  • 29. Liu J.L., Ngoc H.V., Shen Z., Dang P., Zhu H.L., Zhao F., Zhao Z. 2018 - Response of the rhizosphere microbial community to fine root and soil parameters following Robinia pseudoacacia L. afforestation-Appl. Soil Ecol. 132:11-19.
  • 30. Lladó S., López-Mondéjar R., Baldrian P. 2018 - Drivers of microbial community structure in forest soils - Appl. Microbiol. Biotechn. 102: 4331-4338.
  • 31. Lueders T., Manefield M., Friedrich M.W. 2004 - Enhanced sensitivity of DNA-and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients - Environ. Microbiol. 6: 73-78.
  • 32. Osono T. 2006 - Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter - Can. J. Microbiol. 52: 701-716.
  • 33. Pan H., Chen M., Feng H., Wei M., Song F., Lou Y., Cui X., Wang H., Zhug Y. 2020 - Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China - Soil Tillage Res. 198: 104540.
  • 34. Praeg N., Schwinghammer L., Illmer P. 2019 - Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms - FEMS Microbiol.Lett. 366: 259.
  • 35. R Core Development Team. 2004 - R: A language and Environment for Statistical Computing - R Foundation for Statistical Computing, Vienna.
  • 36. Rousk J., Bååth E., Brookes P.C., Lauber C.L., Lozupone C., Caporaso J.G., Knight R., Fierer N. 2010 - Soil bacterial and fungal communities across a pH gradient in an arable soil - ISME J. 4:1340.
  • 37. Schneider T., Keiblinger K. M., Schmid E., Sterflinger-Gleixner K., Ellersdorfer G., Roschitzki B., Richter A., Eberl L., Zechmeister-Boltenstern Sophie., Riedel K. 2012 - Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions - ISME J. 6:1749-1762.
  • 38. Sun S., Li S., Avera B.N., Strahm B.D., Badgley B.D. 2017 - Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration - Appl. Environ. Microbiol. 83(14): e00966-17.
  • 39. Vergani L., Mapelli F., Marasco R., Crotti E., Fusi M., Guardo D.A., Armiraglio S., Daffonchio D., Borin S. 2017 - Bacteria associated to plants naturally selected in a historical PCB polluted soil show potential to sustain natural attenuation - Front. Microbiol. 8: 1-13.
  • 40. Wang H., Liu S.R., Wang J.X., You Y.M., Yang Y., Shi Z.M., Huang X.M., Zheng L., Li Z.Y., Ming A.G., Lu L.H., Cai D.X. 2018 - Mixed-species plantation with Pinus massoniana and Castanopsis hystrix accelerates C loss in recalcitrant coniferous litter but slows C loss in labile broadleaf litter in southern China - For. Ecol. Manage. 422: 207-213.
  • 41. Wu D., Zhang M.M., Peng M., Sui X., Li, W., Sun G. Y. 2019a - Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China - Front. Microbiol. 10: 1636.
  • 42. Wu M.N., Zhong G.S., Meng D.L., Wei W.X. 2015 - Effects of agricultural land use change on fungal community composition - Pol. J. Ecol. 63: 341-351.
  • 43. Wu W.X., Zhou X.G., Wen Y.G., Zhu Z.Y. 2019b - Coniferous-broadleaf mixture increases soil microbial biomass and functions accompanied by improved stand biomass and litter production in subtropical China - Forests, 10: 879.
  • 44. Yuan J., Wen T., Zhang H., Zhao M.L., Penton C.R., Thomashow L.S., Shen Q.R. 2020 - Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt - ISME J. 14: 2936-2950.
  • 45. Yuan X.B., Niu D.C., Wang Y., Boydston A., Guo D., Li X. D., Wen H.Y., Qin Y., Fu H. 2019 - Litter decomposition in fenced and grazed grasslands: A test of the home-field advantage hypothesis - Geoderma, 354:113876.
  • 46. Zhang M. Y., O'Connor P. J., Zhang J. Y., Yan X. X. 2021 - Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone - Geoderma, 384: 114801.
  • 47. Zhang P., He Y.J., Feng Y.M., Torre R.D.L., Jia H.Y., Tang J.X., Cubbage F. 2019 - An analysis of potential investment returns of planted forests in South China - New Forests, 50: 943-968.
  • 48. Zhang W., Chen L., Zhang R., Lin K. F. 2016 - High throughput sequencing analysis of the joint effects of BDE209-Pb on soil bacterial community structure - J. Hazard. Mater. 301: 1-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0218656-c161-4fbd-8883-64d9061c5fa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.