PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Lung diseases classification using pre-trained based deep learning model and support vector machine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Given its rapid transmission and heightened fatality rate, early detection of viral pneumonia is imperative. The virus mainly affects the lung, leading to pneumonia alongside symptoms like fatigue, dry cough, and fever, which can sometimes be misdiagnosed as other respiratory conditions such as lung cancer or pneumonia. Chest X-rays are widely used in the healthcare sector to provide both swift and accurate diagnoses. Deep learning algorithms have demonstrated significant efficiency in detecting and classifying lung diseases, which enhanced the diagnostic process and saving valuable time for medical applications and therapy.The objective of this study is to develop and evaluate a deep learning-based architecture for the accurate multi-class classification of respiratory diseases, including pneumonia, lung opacity, and COVID-19, using chest X-ray images to enhance diagnostic efficiency in healthcare settings. Material and methods: A substantial dataset comprising X-ray images was crated, including 1026 pneumonia cases, 1256 COVID-19 cases, 2305 lung opacity cases and 3224 normal X-ray images. For classification purposes, we employed a pre-trained VGG19 model combined with an SVM classifier. To validate the model’s accuracy, we utilized cross-validation techniques and performance metrics, including precision, recall, F1-score, and the area under the curve (AUC). This approach ensures robust evaluation of the proposed framework. Results: The experimental results demonstrated the superiority of our proposed VGG16+SVM model over existing approaches, achieving an accuracy of 93.50%, recall of 94.16%, precision of 94.45%, F1 score of 93.28%, and area under the curve (AUC) of 90.16%. Conclusions: This enhanced performance equips healthcare practitioners with the tools to diagnose and treat patients more expeditiously and effectively.
Słowa kluczowe
Rocznik
Strony
178--194
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
  • Research Laboratory of Biophysics and Medical Technologies LRBTM (LR13ES07), Higher Institute of Medical Technologies (ISTMT), University of Tunis El Manar, Tunis, Tunisia
autor
  • Biochemistry Laboratory, Bechir Hamza Children’s Hospital, Tunis, Tunisia
  • Department of Educational Sciences, University of Jendouba, Higher Institute of Applied Studies in Humanity Le Kef, Le Kef, Tunisia
  • Research Laboratory of Biophysics and Medical Technologies LRBTM (LR13ES07), Higher Institute of Medical Technologies (ISTMT), University of Tunis El Manar, Tunis, Tunisia
  • Research Laboratory of Biophysics and Medical Technologies LRBTM (LR13ES07), Higher Institute of Medical Technologies (ISTMT), University of Tunis El Manar, Tunis, Tunisia
  • Research Laboratory of Biophysics and Medical Technologies LRBTM (LR13ES07), Higher Institute of Medical Technologies (ISTMT), University of Tunis El Manar, Tunis, Tunisia
Bibliografia
  • 1. Soffer S, Morgenthau AS, Shimon O, et al. Artificial Intelligence for Interstitial Lung Disease Analysis on Chest Computed Tomography: A Systematic Review. Academic Radiology. 2022;29:S226-S235. doi:10.1016/j.acra.2021.05.014
  • 2. Cookson W, Moffatt M, Rapeport G, Quint J. A Pandemic Lesson for Global Lung Diseases: Exacerbations Are Preventable. Am J Respir Crit Care Med. 2022;205(11):1271-1280. doi:10.1164/rccm.202110-2389ci
  • 3. Doe G, Taylor SJ, Topalovic M, et al. Spirometry services in England post-pandemic and the potential role of AI support software: a qualitative study of challenges and opportunities. Br J Gen Pract. 2023;73(737):e915-e923. doi:10.3399/bjgp.2022.0608
  • 4. Parthasarathy V, Saravanan S. Computer aided diagnosis using Harris Hawks optimizer with deep learning for pneumonia detection on chest X-ray 5images. Int j inf tecnol. 2024;16(3):1677-1683. doi:10.1007/s41870-023-01700-1
  • 5. Mannepalli DP, Namdeo V. A cad system design based on HybridMultiscale convolutional Mantaray network for pneumonia diagnosis. Multimed Tools Appl. 2022;81(9):12857-12881. doi:10.1007/s11042-022-12547-2
  • 6. Kim S, Rim B, Choi S, Lee A, Min S, Hong M. Deep Learning in Multi-Class Lung Diseases’ Classification on Chest X-ray Images. Diagnostics. 2022;12(4):915. doi:10.3390/diagnostics12040915
  • 7. Liu H, Wang L, Nan Y, Jin F, Wang Q, Pu J. SDFN: Segmentation-based deep fusion network for thoracic disease classification in chest X-ray images. Computerized Medical Imaging and Graphics. 2019;75:66-73. doi:10.1016/j.compmedimag.2019.05.005
  • 8. Shen D, Wu G, Suk HI. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng. 2017;19(1):221-248. doi:10.1146/annurev-bioeng-071516-044442
  • 9. Wang J, Zhu H, Wang SH, Zhang YD. A Review of Deep Learning on Medical Image Analysis. Mobile Netw Appl. 2020;26(1):351-380. doi:10.1007/s11036-020-01672-7
  • 10. Albahli S, Tayyab Rauf H, Arif M, Tabrez Nafis M, Algosaibi A. Identification of Thoracic Diseases by Exploiting Deep Neural Networks. Computers, Materials & Continua. 2021;66(3):3139-3149. doi:10.32604/cmc.2021.014134
  • 11. Chen X, Wang X, Zhang K, et al. Recent advances and clinical applications of deep learning in medical image analysis. Medical Image Analysis. 2022;79:102444. doi:10.1016/j.media.2022.102444
  • 12. Sevi M, AYDIN I. COVID-19 Detection Using Deep Learning Methods. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). Published online October 26, 2020:1-6. doi:10.1109/icdabi51230.2020.9325626
  • 13. Wang D, Mo J, Zhou G, Xu L, Liu Y. An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images. Gwak J, ed. PLoS ONE. 2020;15(11):e0242535. doi:10.1371/journal.pone.0242535
  • 14. Aggarwal R, Sounderajah V, Martin G, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. Npj Digit Med. 2021;4(1). doi:10.1038/s41746-021-00438-z
  • 15. Nwankpa CE. Advances in Optimisation Algorithms and Techniques for Deep Learning. Adv sci technol eng syst j. 2020;5(5):563-577. doi:10.25046/aj050570
  • 16. Kalaivani N, Manimaran N, Sophia DrS, D Devi D. Deep Learning Based Lung Cancer Detection and Classification. IOP Conf Ser: Mater Sci Eng. 2020;994(1):012026. doi:10.1088/1757-899x/994/1/012026
  • 17. Ni Q, Sun ZY, Qi L, et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol. 2020;30(12):6517-6527. doi:10.1007/s00330-020-07044-9
  • 18. Xu X, Jiang X, Ma C, et al. A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia. Engineering. 2020;6(10):1122-1129. doi:10.1016/j.eng.2020.04.010
  • 19. Law BK, Lin LP. Development Of A Deep Learning Model To Classify X-Ray Of Covid-19, Normal And Pneumonia-Affected Patients. 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). Published online September 13, 2021. doi:10.1109/icsipa52582.2021.9576804
  • 20. Liu C, Wang X, Liu C, Sun Q, Peng W. Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning. BioMed Eng OnLine. 2020;19(1). doi:10.1186/s12938-020-00809-9
  • 21. Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal Applic. 2021;24(3):1207-1220. doi:10.1007/s10044-021-00984-y
  • 22. Goel G. Real-Time Computed Tomography-based Medical Diagnosis Using Deep Learning [Doctoral dissertation]. Virginia Tech; 2022. http://hdl.handle.net/10919/108853
  • 23. Mann PS, Panchal SD, Singh S, Saggu GS, Gupta K. A hybrid deep convolutional neural network model for improved diagnosis of pneumonia. Neural Comput & Applic. 2023;36(4):1791-1804. doi:10.1007/s00521-023-09147-y
  • 24. Hashmi MF, Katiyar S, Hashmi AW, Keskar AG. Pneumonia detection in chest X-ray images using compound scaled deep learning model. Automatika. 2021;62(3-4):397-406. doi:10.1080/00051144.2021.1973297
  • 25. Malik H, Anees T, Din M, Naeem A. CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays. Multimed Tools Appl. 2022;82(9):13855-13880. doi:10.1007/s11042-022-13843-7
  • 26. Ayan E, Unver HM. Diagnosis of Pneumonia from Chest X-Ray Images Using Deep Learning. 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). Published online April 2019:1-5. doi:10.1109/ebbt.2019.8741582
  • 27. El Asnaoui K, Chawki Y, Idri A. Automated Methods for Detection and Classification Pneumonia Based on X-Ray Images Using Deep Learning. Studies in Big Data. Published online 2021:257-284. doi:10.1007/978-3-030-74575-2_14
  • 28. Rahman T, Khandakar A, Qiblawey Y, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine. 2021;132:104319. doi:10.1016/j.compbiomed.2021.104319
  • 29. Islam MdN, Alam MdGR, Apon TS, et al. Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI. Healthcare. 2023;11(3):410. doi:10.3390/healthcare11030410
  • 30. Improving lung disease detection by joint learning with COVID-19 radiography database. Commun Math Biol Neurosci. Published online 2022. doi:10.28919/cmbn/6838
  • 31. Tsai EB, Simpson S, Lungren MP, et al. The RSNA International COVID-19 Open Radiology Database (RICORD). Radiology. 2021;299(1):E204-E213. doi:10.1148/radiol.2021203957
  • 32. Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi PS. Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19. Cogn Comput. 2021;16(4):1589-1601. doi:10.1007/s12559-020-09787-5
  • 33. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical Image Analysis using Convolutional Neural Networks: A Review. J Med. Syst. 2018;42(11). doi:10.1007/s10916-018-1088-1
  • 34. Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol. 2019;145(4):829-837. doi:10.1007/s00432-018-02834-7
  • 35. Kumar A, Kim J, Lyndon D, Fulham M, Feng D. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification. IEEE J Biomed Health Inform. 2017;21(1):31-40. doi:10.1109/jbhi.2016.2635663
  • 36. Rahul, Goyal B. Gaussian Filtering based Image Integration for Improved Disease Diagnosis and Treatment Planning. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). Published online September 3, 2021:1-6. doi:10.1109/icrito51393.2021.9596278
  • 37. M. A, Govindharaju K, A. J, Mohan S, Ahmadian A, Ciano T. A hybrid learning approach for the stage‐wise classification and prediction of COVID‐19 X‐ray images. Expert Systems. 2021;39(4). doi:10.1111/exsy.12884
  • 38. Jiang ZP, Liu YY, Shao ZE, Huang KW. An Improved VGG16 Model for Pneumonia Image Classification. Applied Sciences. 2021;11(23):11185. doi:10.3390/app112311185
  • 39. Panja A, Christy JJ, Abdul QM. An Approach to Skin Cancer Detection using Keras and Tensorflow. J Phys: Conf Ser. 2021;1911(1):012032. doi:10.1088/1742-6596/1911/1/012032
  • 40. Yadavendra, Chand S. Pneumonia lung opacity detection and segmentation in chest x-rays by using transfer learning of the Mask R-CNN. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). Published online March 19, 2021:1035-1040. doi:10.1109/icaccs51430.2021.9441864
  • 41. Ibrokhimov B, Kang JY. Deep Learning Model for COVID-19-Infected Pneumonia Diagnosis Using Chest Radiography Images. BioMedInformatics. 2022;2(4):654-670. doi:10.3390/biomedinformatics2040043
  • 42. Monshi MMA, Poon J, Chung V, Monshi FM. CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR. Computers in Biology and Medicine. 2021;133:104375. doi:10.1016/j.compbiomed.2021.104375
  • 43. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Published online June 2018:4510-4520. doi:10.1109/cvpr.2018.00474
  • 44. Rajpal S, Lakhyani N, Singh AK, Kohli R, Kumar N. Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images. Chaos, Solitons & Fractals. 2021;145:110749. doi:10.1016/j.chaos.2021.110749
  • 45. Hamlili FZ, Beladgham M, Khelifi M, Bouida A. Transfer learning with Resnet-50 for detecting COVID-19 in chest X-ray images. IJEECS. 2022;25(3):1458. doi:10.11591/ijeecs.v25.i3.pp1458-1468
  • 46. Baltazar LR, Manzanillo MG, Gaudillo J, et al. Artificial intelligence on COVID-19 pneumonia detection using chest xray images. Zhang J, ed. PLoS ONE. 2021;16(10):e0257884. doi:10.1371/journal.pone.0257884
  • 47. Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Published online July 2017:1800-1807. doi:10.1109/cvpr.2017.195
  • 48. Showkat S, Qureshi S. Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia. Chemometrics and Intelligent Laboratory Systems. 2022;224:104534. doi:10.1016/j.chemolab.2022.104534
  • 49. Javad Zadeh Barzaki MA, Abdollahi J, Negaresh M, et al. Using Deep Learning for Classification of Lung Cancer on CT Images in Ardabil Province : Classification of Lung Cancer using Xception. 2023 13th International Conference on Computer and Knowledge Engineering (ICCKE). Published online November 1, 2023:375-382. doi:10.1109/iccke60553.2023.10326262
  • 50. Badawy M, Almars AM, Balaha HM, Shehata M, Qaraad M, Elhosseini M. A two-stage renal disease classification based on transfer learning with hyperparameters optimization. Front Med. 2023;10. doi:10.3389/fmed.2023.1106717
  • 51. Houssein EH, Mohamed O, Abdel Samee N, et al. Using deep DenseNet with cyclical learning rate to classify leukocytes for leukemia identification. Front Oncol. 2023;13. doi:10.3389/fonc.2023.1230434
  • 52. Tun NL, Gavrilov A, Tun NM, Trieu DM, Aung H. Remote Sensing Data Classification Using A Hybrid Pre-Trained VGG16 CNN- SVM Classifier. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). Published online January 26, 2021:2171-2175. doi:10.1109/elconrus51938.2021.9396706
  • 53. Bhatt H, Shah M. A Convolutional Neural Network ensemble model for Pneumonia Detection using chest X-ray images. Healthcare Analytics. 2023;3:100176. doi:10.1016/j.health.2023.100176
  • 54. Ho TK, Gwak J. Multiple Feature Integration for Classification of Thoracic Disease in Chest Radiography. Applied Sciences. 2019;9(19):4130. doi:10.3390/app9194130
  • 55. Ben Slama A, Sahli H, Amri Y, Labidi S. V-NET-VGG16: Hybrid deep learning architecture for optimal segmentation and classification of multi-differentiated liver tumors. Intelligence-Based Medicine. 2025;11:100210. doi:10.1016/j.ibmed.2025.100210
  • 56. Amri Y, Ben Slama A, Mbarki Z, Selmi R, Trabelsi H. Automatic glioma segmentation based on efficient U-net model using MRI images. Intelligence-Based Medicine. 2025;11:100216. doi:10.1016/j.ibmed.2025.100216
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d01e0e13-ec56-4d1e-beed-76aeecb99065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.