PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silicon Carbide Fabrication by Infiltration of Molten Fe-Si Alloy Through Two-Step Reaction Sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wider application of silicon carbide (SiC) is anticipated for increasing the durability of various structural facilities. For this study, SiC was fabricated with decreased electrical resistivity for precision electrical discharge machining. Two-step reaction sintering by infiltration of molten Fe-Si alloy was applied for SiC fabrication. The procedure included first sintering at 973 K in Ar gas atmosphere and second sintering by spontaneous infiltration of molten Fe-75%Si alloy at 1693 K in vacuum. The sintered structure porosity became very low, forming 3C-type SiC. Results confirmed that molten Fe-75%Si alloy infiltration occurred because of reaction sintering. The electrical resistivity of the sintered SiC infiltrated by molten Fe-75%Si alloy can be improved to be two orders of magnitude lower than that by molten Si, consequently maintaining the high performance of SiC.
Twórcy
  • Fujico Co., Ltd., Kitakyushu, Japan
autor
  • Fujico Co., Ltd., Kitakyushu, Japan
autor
  • Fujico Co., Ltd., Kitakyushu, Japan
  • Fujico Co., Ltd., Kitakyushu, Japan
  • Fujico Co., Ltd., Kitakyushu, Japan
  • Fujico Co., Ltd., Kitakyushu, Japan
  • Kyushu Institute of Technology, Faculty of Engineering, Kitakyushu, Japan
Bibliografia
  • [1] H. Tanaka, J. Ceram. Soc. Japan 110 (10), 877-883 (2002).
  • [2] M. Iwasa, M. Kinoshita, J. Ceram. Soc. Japan 108 (2), 206-209 (2000).
  • [3] S. Hiratsuka, J. Japan Foundry Soc. 82, 769-771 (2010).
  • [4] K. Nakano, A. Kamiya, H. Ogawa, Y. Nishino, J. Ceram. Soc. Japan 100 (4), 472-475 (1992).
  • [5] M. Suzuki, Y. Inoue, M. Sato, T. Ishikawa, K. Goda, J. Mat. Sci. Japan 52 (6), 681-687 (2003).
  • [6] K. Asano, H. Yoneda, J. Japan Foundry Soc. 81, 529-535 (2009).
  • [7] H. Gu, H. Nakae, J. Japan Foundry Soc. 76, 909-914 (2004).
  • [8] J. N. Ness, T. F. Page, J. Mater. Sci. 21, 1377-1397 (2010).
  • [9] S. Suyama, T. Kameda, Y. Itoh, Diam. Relat. Mater. 12, 1201-1204 (2003).
  • [10] H. Nakae, H. Yamaura, Y. Sugiyama, J. Japan Foundry Soc. 75, 29-34 (2003).
  • [11] H. Kaneda, T. Choh, J. Japan. Inst. Light Met. 45 (10), 537-542 (1995).
  • [12] A. J. Whitehead, T. F. Page, J. Mater. Sci. 27, 839-852 (1992).
  • [13] Y. Fukuzawa, N. Mohri, Int. J. Japan Soc. Prec. Eng. 64 (12), 1731-1734 (1998).
  • [14] Ch. Kloc, E. Arushanow, M. Wendl, H. Hohl, U. Malang, E. Bucher, J. Alloys Compd. 219, 93-96 (1995).
  • [15] V. Milekhine, M. I. Onsoien, J. K. Solberg, T. Skaland, Intermetallics 10, 743-750 (2002).
  • [16] A. Ciftja, T. A. Engh, M. Tangstad, Metall. Mater. Trans. A 41A, 3183-3195 (2010).
  • [17] G. W. Liu, M. L. Muolo, F. Valenza, A. Passerone, Ceram. Int. 36, 1177-1188 (2010).
  • [18] F. Sergejev, M. Antonov, Proc. Estonian Acad. Sci. Eng. 12 (4), 388-398 (2006).
  • [19] L. K. Fevel, D. R. Petersen, C. K. Saha, J. Mater. Sci. 27, 1913-1925 (1992).
  • [20] T. B. Massalski, Binary alloy phase diagrams, II Ed. ASM International 1772 (1990).
  • [21] H. Zhou, R. N. Singh, J. Am. Ceram. Soc. 78 (9), 2456-2462 (1995).
  • [22] M. Ito, H. Nagai, E. Oda, S. Katsuyama, K. Majima, J. Mater. Sci. 37, 2609-2614 (2002).
  • [23] https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity, accessed: 18. 09.2018.
  • [24] Y. Takeda, K. Nakamura, K. Maeda, Y. Matsushita, J. Ceram. Soc. Jpn 95, 860-863 (1987).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d01be9f2-ba9f-43f8-8868-5b56cadf0a97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.