PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and Characterization of Photocatalyst Nanocomposite for the Degradation of Organic Pollutants in Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various efforts can be made to obtain clean water in the environment by utilizing semiconductor technology. This study aims to inform the synthesis and characterization of MnO2/CuO/Fe2O3 photocatalyst for crystal violet degradation in wastewater. Nanocomposite was synthesized through a sol-gel process with three semiconductor materials doped. X-ray diffraction (XRD) was employed to analyze the nanocomposite structure and determine crystal size. Fourier transform infrared (FTIR) was used to provide functional groups in the nanocomposite. A scanning electron microscope (SEM) can characterize surface morphology and particle size. The results of the SEM show that an increase in sintering temperature causes the smallest particle sizes to be 54.79 nm. The result of characterization using the ultraviolet-visible (Uv-Vis) spectrophotometry analysis the most effective band gap value in photocatalyst activity was 1.36 eV. The optimum percent of degradation MnO2/CuO/Fe2O3 catalyst was 50.40% for the sample at a temperature of 400 °C under irradiation with sunlight for six hours. Test results show that increased sintering temperature increased the photocatalytic activity.
Słowa kluczowe
Rocznik
Strony
388--396
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Research Center for Theoretical and Experimental of Functional Materials, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jalan. Prof Hamka, Padang 25131, West Sumatera, Indonesia
  • Research Center for Theoretical and Experimental of Functional Materials, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jalan. Prof Hamka, Padang 25131, West Sumatera, Indonesia
autor
  • Research Center for Theoretical and Experimental of Functional Materials, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jalan. Prof Hamka, Padang 25131, West Sumatera, Indonesia
  • Research Center for Theoretical and Experimental of Functional Materials, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jalan. Prof Hamka, Padang 25131, West Sumatera, Indonesia
  • Department of Physics, Faculty of Sciences and Mathematics, University Pendidikan Sultan Idris, Tanjung Malim, Perak 35950, Malaysia
  • Research Center for Theoretical and Experimental of Functional Materials, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jalan. Prof Hamka, Padang 25131, West Sumatera, Indonesia
Bibliografia
  • 1. Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300(December 2021), 102597. https://doi.org/10.1016/j.cis.2021.102597
  • 2. Alagiri, M., & Hamid, S.B.A. (2015). Sol–gel synthesis of α-Fe2O3 nanoparticles and its photocatalytic application. Journal of Sol-Gel Science and Technology, 74(3), 783–789. https://doi.org/10.1007/s10971-015-3663-y
  • 3. Alp, E., Halil, E., Kür, M., & Genç, A. (2019). Synergetic activity enhancement in 2D CuO-Fe2O3 nanocomposites for the photodegradation of rhodamine B. Ceramics International, 45, 9174–9178. https://doi.org/10.1016/j.ceramint.2019.01.258
  • 4. Amin, N.H., Ali, L.I., El-molla, S.A., Ebrahim, A.A., & Mahmoud, H.R. (2016). Effect of Fe2O3 precursors on physicochemical and catalytic properties of CuO/Fe2O3 system. Arabian Journal of Chemistry, 9, S678–S684. https://doi.org/10.1016/j.arabjc.2011.07.026
  • 5. Ani, I.J., Akpan, U.G., Olutoye, M.A., & Hameed, B.H. (2018). Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2 and ZnO-based photocatalysts : Recent development. Journal of Cleaner Production, 205, 930–954. https://doi.org/10.1016/j.jclepro.2018.08.189
  • 6. Anisa, K., Ratnawulan, R., Fauzi, A., Rahmadhani, D., Steven, A., & Azleen, F. (2023). Effect of Temperature Variation on Band Gap Value in Thin Layers of Nano Photocatalyst Fe2O3/CuO/MnO2. IOP Conf. Series: Earth and Environmental Science, 1228(012037). https://doi.org/10.1088/1755-1315/1228/1/012037
  • 7. Aroob, S., Carabineiro, S.A.C., Taj, M.B., Bibi, I., Raheel, A., Javed, T., Yahya, R., Alelwani, W., Verpoort, F., Kamwilaisak, K., Al-Farraj, S., & Sillanpää, M. (2023). Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts, 13(3), 502. https://doi.org/10.3390/catal13030502
  • 8. Azleen, F., Ratnawulan, R., Fauzi, A., Rahmadhani, D., Steven, A., & Anisa, K. (2023). Effect of Composition Variation on The Crystal Size and Band Gap of Thin Film Nano Photocatalyst Fe2O3/CuO/MnO2. IOP Conference Series: Earth and Environmental Science, 1228(1), 012017. https://doi.org/10.1088/1755-1315/1228/1/012017
  • 9. Becker, H., Güttel, R., & Turek, T. (2019). Performance of diffusion-optimized Fischer-Tropsch catalyst layers in microchannel reactors at integral operation. Catalysis Science and Technology, 9(9), 2180–2195. https://doi.org/10.1039/c9cy00457b
  • 10. Chen, H., You, S., Ma, Y., Zhang, C., Jing, B., Cai, Z., Tang, B., Ren, N., & Zou, J. (2018). Carbon Thin- Layer-Protected Active Sites for ZIF-8-Derived Nitrogen-Enriched Carbon Frameworks/Expanded Graphite as Metal-Free Catalysts for Oxygen Reduction in Acidic Media. Chemistry of Materials, 30(17), 6014–6025. https://doi.org/10.1021/acs.chemmater.8b02275
  • 11. Chiam, S.L., Pung, S.Y., & Yeoh, F.Y. (2020). Recent developments in MnO2-based photocatalysts for organic dye removal: a review. In Environmental Science and Pollution Research (Vol. 27, Issue 6, pp. 5759–5778). Springer. https://doi.org/10.1007/s11356-019-07568-8
  • 12. Fardood, S.T., Moradnia, F., & Ramazani, A. (2019). Green synthesis and characterization of ZnMn2O4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study. Micro & Nano Letters, 14, 986–991. https://doi.org/10.1049/mnl.2019.0071
  • 13. Fufa, T.O., Mengesha, A.T., & Yadav, O.P. (2014). Synthesis, Characterization and Photocatalytic Activity of MnO2/Al2O3/Fe2O3 Nanocomposite For Phenol Degradation. Chemistry and Materials Research, 6(10), 73–87.
  • 14. Gayatri, R., Agustina, T.E., Bahrin, D., Moeksn, R., & Gustini, G. (2021). Preparation and Characterization of ZnO-Zeolite Nanocomposite for Photocatalytic Degradation by Ultraviolet Light. Journal of Ecological Engineering, 22(2), 178–186. https://doi.org/10.12911/22998993/131031
  • 15. Karimi, R., Yousefi, F., Ghaedi, M., & Rezaee, Z. (2019). Comparison of the behavior of ZnO – NP – AC and Na , K doped ZnO – NP – AC for simultaneous removal of Crystal Violet and Quinoline Yellow dyes : Modeling and optimization. Polyhedron, 170, 60–69. https://doi.org/10.1016/j.poly.2019.05.038
  • 16. Le, V.T., Doan, V.D., Le, T.T.N., Dao, M.U., Vo, T.T.T., Do, H.H., Viet, D.Q., & Tran, V.A. (2021). Efficient photocatalytic degradation of crystal violet under natural sunlight using Fe3O4/ZnO nanoparticles embedded carboxylate-rich carbon. Materials Letters, 283, 128749. https://doi.org/10.1016/j.matlet.2020.128749
  • 17. Liu, J., Wu, P., Yang, S., Rehman, S., Ahmed, Z., Zhu, N., Dang, Z., & Liu, Z. (2020). Applied Catalysis B : Environmental A photo-switch for peroxydisulfate non-radical/radical activation over layered CuFe oxide: Rational degradation pathway choice for pollutants. Catalysis, 261, 118232. https://doi.org/10.1016/j.apcatb.2019.118232
  • 18. Mamiyev, Z., & Balayeva, N.O. (2022). Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts, 12, 1–36. https://doi.org/https://doi.org/10.3390/catal12111316 Academic
  • 19. Mandrekar, P.P., & D’souza, A. (2023). Green Synthesis of Copper Oxide Nanoparticles Using Coffe, Piper Nigrum, and Coriandrum Sativum and its Application in Photocatalytic Degradation of Methylene Blue Dye. Rasayan Journal of Chemistry, 16(1), 276–283. https://doi.org/10.31788/RJC.2023.1616889
  • 20. Mesrar, M., Elbasset, A., Mrabet, I. El, Zaitan, H., Abdi, F., Echatoui, N., & Lamcharfi, T. (2023). Hydrothermal Synthesis and Characterization of Sodium Bismuth Titanate for Photocatalytic Applications. Journal of Ecological Engineering, 24(10), 185–197.
  • 21. Mondal, D., Das, S., Kumar, B., & Bhattacharya, D. (2019). Size-engineered Cu-doped α-MnO2 nanoparticles for exaggerated photocatalytic activity and energy storage application. Materials Research Bulletin, 115, 159–169. https://doi.org/10.1016/j.materresbull.2019.03.023
  • 22. Neeti, K., Singh, R., & Ahmad, S. (2023). The role of green nanomaterials as effective adsorbents and applications in wastewater treatment. Materials Today: Proceedings, 77, 269–276. https://doi.org/10.1016/j.matpr.2022.11.300
  • 23. Pawar, S.A., Patil, D.S., & Shin, J.C. (2019). Transition of hexagonal to square sheets of Co3O4 in a triple heterostructure of Co3O4/MnO2/GO for high-performance supercapacitor electrode. Current Applied Physics, 19(7), 794–803. https://doi.org/10.1016/j.cap.2019.04.009
  • 24. Permana, M.D., Noviyanti, A.R., Lestari, P.R., Kumada, N., Eddy, D.R., & Rahayu, I. (2022). Enhancing the Photocatalytic Activity of TiO2/Na2Ti6O13 Composites by Gold for the Photodegradation of Phenol. Chemengineering, 6(5). https://doi.org/10.3390/chemengineering6050069
  • 25. Ratnawulan, R., Ramli, R., Fauzi, A., & Sukma Hayati, A.E. (2021). Synthesis and characterization of polystyrene/Cuo-Fe2O3 nanocomposites from natural materials as hydrophobic photocatalytic coatings. Crystals, 11(1), 1–13. https://doi.org/10.3390/cryst11010031
  • 26. Ratnawulan, R., Sarimai, S., & Fauzi, A. (2022). The Synthesis of CuO/ Polystyrene Nanocomposite Superhydrophobic Layer using The Spin Coating Method. Science and Technology Indonesia, 7(2), 158–163. https://doi.org/https://doi.org/10.26554/sti.2022.7.2.158-163
  • 27. Sukma, H., Ratnawulan, R., & Ramli, R. (2019). Semiconductor-Based Photocatalysts Degradation of Methyl Orange Using Cuo-Fe2O3 Nanocomposites. International Journal of Progressive Sciences and Technologies (IJPSAT), 15(1), 1–5.
  • 28. Surendra, B.S., Veerabhdraswamy, M., Anantharaju, K.S., Nagaswarupa, H.P., & Prashantha, S.C. (2018). Green and chemical-engineered CuFe2O4 characterization cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications. Journal of Nanostructure in Chemistry, 8, 45–59. https://doi.org/http://doi.org/10.1007/s40097-018-0253-x
  • 29. Touqeer, M., Baig, M.M., Aadil, M., Philips, O., Shakir, I., Aboud, M.F.A., & Warsi, M.F. (2020). New Co-MnO based Nanocrsytallite for photocatalysis studies driven by visible light. Journal of Taibah University for Science, 14(1), 1580–1589. https://doi.org/10.1080/16583655.2020.1846966
  • 30. Wadi, K. M., Jasim, K. A., Shaban, A. H., Kamil, M. K., & Nsaif, F. K. (2020). The effects of sustainable manufacturing pressure on the structural properties of the pb2ba2ca2cu3o9+σ compound. Journal of Green Engineering, 10(9), 6052–6062.
  • 31. Wang, Y., Silveri, F., Bayazit, M. K., Ruan, Q., Li, Y., Xie, J., Catlow, C.R.A., & Tang, J. (2018). Bandgap Engineering of Organic Semiconductors for Highly Efficient Photocatalytic Water Splitting. Advance Energy Material, 8, 1801084. https://doi.org/10.1002/aenm.201801084
  • 32. Yuniar, Agustina, T. E., Faizal, M., & Hariani, P. L. (2023). Synthesis and Characterization of ZnO/MnFe2O4 Nanocomposites for Degrading Cationic Dyes. Journal of Ecological Engineering, 24(4), 252–263. https://doi.org/10.12911/22998993/160514
  • 33. Zhang, Y., Liu, L., Chen, Y., Cheng, X., Song, C., Ding, M., & Zhao, H. (2019). Synthesis of MnO2- CuO-Fe2O3/CNTs catalysts: Low-temperature SCR activity and formation mechanism. Beilstein Journal of Nanotechnology, 10, 848–855. https://doi.org/10.3762/BJNANO.10.85
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0157fd6-5076-4f0d-b08f-4254faa955d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.