Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the extremely close distance of lower coal seam mining, affected by secondary mining, the fractures expand through the layer in the composite roof, and this process is complex and diverse. In this paper, a three-point bending load test of different strength rocks and their combinations is conducted by combining acoustic emission. The results indicate that the overall deflection angle in the lower roof is approximately 8° smaller than that in the upper roof. When the fracture extends from the brittle roof to the plastic roof, the deflection angle in both types of roofs increases. When the plastic roof extends to the brittle roof, the deflection angle of the brittle roof increases while that of the plastic roof decreases. The damage degree of the composite rock mass during the failure process lies between the two single rock masses that make up the composite rock mass. The damage is dense at the initial expansion moment of the fracture in the rock mass, but weak when the interface expands through the layer. The energy evolution of the composite roof mainly depends on the high-strength roof, and the horizontal migration process of the fracture at the interface does not release energy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
655--674
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Taiyuan University of Technology, College of Mining Engineering, 030024, Taiyuan, China
- Taiyuan University of Technology, Key Laboratory of In-Situ Property-Improving Mining of Ministry of Education, 030024, Taiyuan, China
autor
- Taiyuan University of Technology, College of Mining Engineering, 030024, Taiyuan, China
autor
- Taiyuan University of Technology, College of Mining Engineering, 030024, Taiyuan, China
Bibliografia
- [1] Guoshu Yang, Jianshu Wang, Overburden structure evolution and pressure law of second mining in a close-rangecoal seam group. Journal of China Coal Society 43 (2), 353-358 (2018).DOI : https://doi.org/10.13225/j.cnki.jccs.2018.1616.
- [2] Xuping Li, Yanqing Liu, Xiaopeng Ren, et al., Roof breaking characteristics and mining pressure APPEARANCE laws in close distance COAL seams. Energy Exploration & Exploitation 41 (2), 728-744 (2023).DOI : https://doi.org/10.1177/01445987221120888.
- [3] Qingxiang Huang, Jinbo Han, Study on fracture evolution mechanism of shallow-buried close coal seam mining.Journal of Mining & Safety Engineering 36 (4), 706-711 (2019).DOI : https://doi.org/10.13545/j.cnki.jmse.2019.04.008.
- [4] D engyun Hao, Yongzheng Wu, Haijun Chen, et al., Instability mechanism and prevention technology of road wayin close distance and extra thick coal seam under goaf. Journal of China Coal Society 44 (9), 2682-2690 (2019).DOI: https://doi.org/10.13225/j.cnki.jccs.2019.0217.
- [5] H ongbao Zhao, Hui Cheng, Dongliang Ji, et al., Study of the mechanism and evolution law of unsymmetrical failure of the mining roadway in close distance coal seam. Journal of China University of Mining & Technology 50 (6), 1029-1040+1050 (2021). DOI: https://doi.org/10.13247/ j.cnki.jcumt.001342.
- [6] Hongpu Kang, Pengfei Jiang, Bingxiang Huang, et al., Roadway strata control technology by means of bolting modification-destressing in synergy in 1000 m deep coal mines. Journal of China Coal Society 45 (3), 845-864(2020). DOI: https://doi.org/10.13225/j.cnki.jccs.SJ20. 0204.
- [7] Y aming Zhao, Wei Yang, Yang Chen, Spontaneous combustion prevention technology of with drawal working face of spontaneous combustion thick coal seam in rock burst mine. Safety in Coal Mines 53 (4), 81-86+93 (2022).DOI: https://doi.org/10.13347/j.cnki.mkaq.2022.04.013.
- [8] Z henqi Liu, Xiaoxing Zhong, et al., Redevelopment of Fractures and Permeability Changes after Multi-Seam Mining of Shallow Closely Spaced Coal Seams. Archives of Mining Sciences 67 (4), 681-697 (2022).DOI : https://doi.org/10.24425/ams.2022.143681.
- [9] Yangquan Jiao, Shuangming Wang, Limin Fan, et al., Key elements and framework model of groundwater system in Jurassic coal measures of Ordos Basin. Journal of China Coal Society 45 (7), 2411-2422 (2020).DOI : https://doi.org/10.13225/j.cnki.jccs.dz20.0930.
- [10] Minggao Qian, Xiexing Miao, Fulian He, Key block analysis of ‘masonry beam‘ structure in stope. Journal of China Coal Society 1994 (06), 557-563 (1994).
- [11] Wei Wang, Zhongbiao Gong, Deformation law and control of surrounding rock of dynamic pressure roadway under coal pillar in close seam group. Coal Science and Technology 50 (2), 143-152 (2022).DOI : https://doi.org/10.13199/j.cnki.cst.2022-2089.
- [12] Dawei Yin, Shaojie Chen, et al, Simulation Study on Strength and Failure Characteristics of Coal-Rock Composite Sample with Coal Persistent Joint. Archives of Mining Sciences 64 (3), 609-623 (2019).DOI : https://doi.org/10.24425/ams.2019.129372.
- [13] Jisheng Xue, Tielin Zhao, Deformation and Fracture Characteristics of Coal Gangue Interbedded Samples under Loading and Unloading Conditions. Advances in Civil Engineering. (2022). DOI: https://doi.org/10.1155/2022/7734078.
- [14] Susheng Wang, Shengqi Yang, Wenling Tian, et al., Research on phase-field simulation method of crack propagation of rock with pre-existing fissures. Chinese Journal of Rock Mechanics and Engineering 42 (2), 365-377 (2023).DOI: https://doi.org/10.13722/j.cnki.jrme.2022. 0267.
- [15] Qi Li, Zhen Li, Peng Li, et al., Analysis on meso-deformation and fracture evolution features of coal based on CT scanning under in-situ loading. Mining Research and Development 43 (4), 110-115 (2023).DOI : https://doi.org/10.13827/j.cnki.kyyk.2023.04.012.
- [16] Jie Zhang, Yifeng He, Nan Luo, et al., Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group. Safety in Coal Mines 53 (3), 58-65 (2022).DOI : https://doi.org/10.13347/j.cnki.mkaq.2022.03.010.
- [17] Jianhua Li, Shuai Wang, Yanjun He, et al., Fissure evolution of gob overlying strata under super imposed miningin coal seams group. Coal Engineering 53 (12), 92-96 (2021).
- [18] Ping Cao, Taoying Liu, Chengzhi Pu, et al., Crack propagation and coalescence of brittle rock-like specimens withpre-existing cracks in compression. Engineering Geology 187, 113-121 (2015).DOI : https://doi.org/10.1016/j.enggeo.2014.12.010.
- [19] Yizhao Wang, Zhendong Cui, Ming Li, et al., Effect of layer thickness of flaggy rock on crack propagation path subjected to three-point bending. Journal of Engineering Geology 26 (5), 1326-1335 (2018).DOI : https://doi.org/10.13544/j.cnki.jeg.2018182.
- [20] Yingming Yang, Zhibo Ma, Weilong Zhang, et al., Study on crack propagation in layered rock under the three-point bending conditions. Frontiers in Earth Science (2023). DOI: https://doi.org/10.3389/feart.2022.1084272.
- [21] Kezhong Wang, Chun Zhang, Yaohui Gao, et al., Influence of Prefabricated Fissure Combinations on Strength and Failure Characteristics of Rock-Like Specimens under Uniaxial Compression. International Journal of Geomechanics 23 (2), (2023). DOI: https://doi.org/10.1061 /(asce)gm.1943-5622.0002637.
- [22] Xiaoyi Chen, Study on crack propagation behavior and mechanical characteristics of composite roof of rectangular. Inner Mongolia University of Science & Technology (2022).DOI : https://doi.org/10.27724/d.cnki.gnmgk.2022.000401.
- [23] Z hijian Lin, Research on Mechanical Properties and Crack Propagation Characteristics of Layered Sandstone Under Three-point Bending Conditions. North China University of Water Resources and Electric Power (2022).DOI: https://doi.org/10.27144/d.cnki.ghbsc.2022.000499.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d015361a-cf30-4214-a156-9f40d29fc419
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.