PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of ventilated facades in terms of airflow in the air gap

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gradual exploitation of the natural environment has forced most developed countries to promote ecological solutions and the development of sustainable construction. Ventilated facades perfectly match into this trend, and with their appropriate design, they bring real energy savings. This paper analyzes numerically the influence of the inflowing air, mimicking the wind, on the efficiency of heat removal from the ventilated space and heat transmission by thermal radiation and conduction through the consecutive layers of the external wall. For the purpose of comparison, two variants of ventilated facade were adopted: open and closed joints, at different wind speeds prevailing outside. The results obtained show that in windless weather, the ventilated facade with open joints shows higher heat removal efficiency and thus lower heat transmission to the building interior. At higher wind speeds of 5 m/s, the open-joint and closed-joint ventilated facades achieve similar heat transfer efficiency, and the prevailing temperature inside the building for the two technologies is almost identical. Subsequent increments of incoming wind on the building result in minimal differences in the heat transmission to the building interior, representing changes of about 0.1°C at increments of another 5 m/s of incoming wind. Conscious use of this facade technology, along with appropriate urban design of cities, can help reduce the energy needed to cool buildings during the summer period.
Wydawca
Rocznik
Strony
224--236
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Website: https://ec.europa.eu/eurostat/.
  • [2] A.-J. Romana i N. Maciej, „Wskaźnikowa ocena komfortu w budynkach mieszkalnych zlokalizowanych w klimacie umiarkowanym,” Izolacje, nr 6, pp. 2-7, 2016.
  • [3] EOTA ETAG 034 Part 1: Ventilated Cladding Kits comprising Cladding components and associated fixings.
  • [4] EN 1991-1-5: Eurocode 1: Actions onstructures - Part 1-5: General actions - Thermal actions.
  • [5] C. Sanjuan, M. J. Suárez, M. González, J. Pistono i E. Blanco, .Energy performance of an open-joint ventilated facade compared with a conventional sealed cavity façade, Solar Energy 85, pp. 1851-1863, 2011.
  • [6] M. Ibañez-Puy, M. Vidaurre-Arbizu , J. A. Sacristán-Fernádez i C. Martín-Gómez, Opaque Ventilated Façades: Thermal and energy performance review.,” Renewable and Sustainable Energy Reviews, Volume 79, pg. 180–191. doi: 10.1016/j.rser.2017.05.059., nr 79, pp. 180-191, 2017.
  • [7] E. Naboni, „Ventilated opaque walls - A performance simulation method and assessment of simulated performance,” w Seminar Notes at Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Berkeley, California, USA, May 28 2007.
  • [8] A. Gagliano, F. Nocera i S. Aneli, „Thermodynamic analysis of ventilated facades under different wind conditions in summer period,” Energy and Buildings 122, pp. 131-139, 2016.
  • [9] C. Aparicio-Fernández, J.-L. Vivancos, P. Ferrer-Gisbert i R. Royo-Pastor, Energy performance of a ventilated façade by simulation with experimental validation, Applied Thermal Engineering 66, pp. 563-570, 2014.
  • [10] J. Szyszka, J. Kogut, I. Skrzypczak i W. Kokoszka, „Selective Internal Heat Distribution in Modified Trombe Wall,” IOP Conference Series: Earth and Environmental Science, tom 4, nr 95, 2017.
  • [11] M. Chereches, N. C. Chereches i S. Hudisteanu, „Numerical modeling of solar radiation inside ventilated double-skin facades,” International journal of heat and technology vol. 33, No. 4, pp. 246-254, 2015.
  • [12] M. Chereches, N. C. Chereches i S. Hudisteanu, The influence of different flow velocities on the heat transfer inside a ventilated façade, Revista Romana de Inginerie Civila Vol. 5, No.1, 2014.
  • [13] L. Cirillo, D. Di Ronza, V. Fardella, O. Manca i S. Nardini, „Numerical and experimental investigations on a solar chimney integrated in a building façade., International Journal of Heat and Technology 33 (4), pp. 246-254, 2015.
  • [14] B. Launder i D. Spalding, „The numerical computation of turbulent flows. Computer Methods.,” Computer Methods in Applied Mechanics and Engineering 3, pp. 269-289, 1974.
  • [15] Q. Chen, „Comparison of different κ −ε models for indoor airflow computations.,” Numerical Heat Transfer, Part B, 28, pp. 353-369, 1995.
  • [16] E. Chui i G. Raithby, „Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method.,” Numerical Heat Transfer, Part B, 23, pp. 269-288, 1993.
  • [17] Website: http://www.breaam.com
  • [18] Website: http://leed.usgbc.org/leed.html
  • [19] O. Kopyłow, Elewacje wentylowane - Warunki Techniczne Wykonania i Odbioru Robót Budowlanych B14/2015.
  • [20] A. Gagliano, F. Nocera and S. Aneli, “Thermodynamic analysis of ventilated facades under different wind conditions in summer period,” Energy and Buildings 122, pp. 131-139, 2016.
  • [21] C. Aparicio-Fernández, J.-L. Vivancos, P. Ferrer-Gisbert and R. Royo-Pastor, “Energy performance of a ventilated façade by simulation with experimental validation,” Applied Thermal Engineering 66, pp. 563-570, 2014.
  • [22] ANSYS Fluent Theory Guide.
  • [23] ANSYS Fluent User’s Guide.
  • [24] EOTA ETAG 034 Part 2: Cladding Kits comprising Cladding components, associated fixings, subframe and possible insulation layer.
  • [25] K. Schabowicz, Elewacje wentylowane Technologia Produkcji i metody badania płyt włóknisto-cementowych, Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2018.
  • [26] EOTA ETAG 034 Part 2: Cladding Kits comprising Cladding components, associated fixings, subframe and possible insulation layer.
  • [27] M. Suárez, C. Sanjuan, A. Gutiérrez, J. Pistono and E. Blanco, “Energy evaluation of an horizontal open joint ventilated façade,” Applied Thermal Engineering 37, pp. 302-313, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d00eaaa9-9981-43aa-945b-493a15bd130d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.