PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Econometric Analysis of the Impact of Climate Change on the Sustainability of Agricultural Production in Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to determine the mechanisms of climate change impact on the yield of the main exportoriented crops in the agro-climatic zones of Ukraine. The study of the problem of changing the acreage of the main export-oriented crops was conducted according to the data of the State Statistics Service of Ukraine on the time horizon 2000-2018 in the following order: first, the dynamics of the change of the acreage under corn, sunflower and wheat by the agro-climatic zones of Ukraine was analyzed; secondly, the trends of yield changes of these crops were investigated based on the increase in the difference in yields between the northern and southern zones; and, finally, the temporal and spatial expansion in the area of crop propagation were investigated by applying the panel regression method. The findings obtained indicate that the applied models confirm the assumption of the effects of climate change on crop yield changes and the zones expansion in the northern direction. If the country’s wheat area can be considered stable (variation is insignificant), then the corn and sunflower areas have grown steadily under the influence of increasing demand from national and world markets. At the same time, the growing acreage under corn and sunflower occurred in all climatic zones. Stable expansion of corn crops in the north direction in all three agroclimatic zones of Ukraine has been statistically confirmed. The article presents the findings of empirical analysis, which confirm that if the boundaries of soil and climatic zones change, the conditions of growing crops and their yield will consequently change as well. Thus, based on current global forecasts, the impact of weather on Ukraine’s agriculture will increase, and the most negative effects can be expected in the Steppe zone, where the likelihood of weather and climate risks increases, requiring the development of adaptation and mitigation measures as well as exploitation of new potential opportunities that are being opened. Studies have shown that there is an expansion in crops to the north and a change in their pattern, including a significant increase in the area under corn.
Rocznik
Strony
275--288
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Economic Cybernetics, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 16, 03041, Kyiv, Ukraine
  • Ministry for Development of Economy, and Agriculture of Ukraine, Grushevskogo 12/2, 01008, Kyiv, Ukraine
  • Department of Economic Cybernetics, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 16, 03041, Kyiv, Ukraine
  • Department of Economic Cybernetics, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 16, 03041, Kyiv, Ukraine
  • Department of Economic Cybernetics, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 16, 03041, Kyiv, Ukraine
Bibliografia
  • 1. Adamenko, T. 2013. Climate change and its impact on Ukraine’s agro-climatic resources. Presentation at the round table Development of agrarian production in the conditions of agroclimatic changes, Ukraine, Kyiv.
  • 2. Amadu, F., McNamara, P. and Millera, D. 2020. Yield effects of climate-smart agriculture aid investment in southern Malawi. Food Policy. https://doi.org/10.1016/j.foodpol.2020.101869
  • 3. Asfaw,S., Mccarthy, N., Lipper, L., Arslan, A. and Cattaneo A. 2016. What determines farmers’ adaptive capacity? Empirical evidence from Malawi. Food Security, 8(3), 643-664. DOI:10.1007/s12571-016-0571-0
  • 4. Bokusheva, R. 2011. Measuring dependence in joint distributions of yield and weather variables, Agricultural Finance Review, 71(1), 120-141. DOI:10.1108/00021461111128192
  • 5. Brechin1, S. 2003. Comparative public opinion and knowledge on global climatic change and the Kyoto Protocol: the US versus the world? International Journal of Sociology and Social Policy, 23(10), 106134. DOI:10.1108/01443330310790318
  • 6. Chen, J., McCarl, B. and Thayer, A. 2017. Climate Change and Food Security: Threats and Adaptation. World Agricultural Resources and Food Security, 17, 69-84. DOI:10.1108/S1574-871520170000017006
  • 7. Cogato, A., Meggio, F., Migliorati, M. and Marinello, F. 2019. Weather Events in Agriculture: A Systematic Review. Sustainability, 11(9), 2547. DOI:10.3390/su11092547
  • 8. Cohen, J.1997. How many people can the Earth support? New York, NY.
  • 9. Coulibaly, J.Y.,Chiputwa, B., Nakelse, T. and Kundhlande, G. 2017. Adoption of agroforestry and its impact on household food security among farmers in Malawi. Agric. Syst.,155, 52-69
  • 10. Didukh,Y. 2009. Ecological aspects of the global climate changes: reasons, consequences and actions. Visnyk of the National Academy of Sciences of Ukraine, 2, 34-44.
  • 11. Dittrich, R., Wreford, A. and Moran, D. 2016. A survey of decision-making approaches for climate change adaptation: are robust methods the way forward? Ecological Economics, 122, 79-89. DOI:10.1016/j.ecolecon.2015.12.006
  • 12. FAO 2017. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security, Italy, Rome.
  • 13. Gobin, A., Tarquis, A. and Dalezios, R. 2013. Weather-related hazards and risks in agriculture. Natural Hazards and Earth System Science, 13(10), 2599-2603. DOI:10.5194/nhess-13-2599-2013
  • 14. Imelda, I., Matthias, F. and Michael, J. Roberts. 2018. Variable Pricing and the Cost of Renewable Energy. National Bureau of Economic Research Working Papers, 24712.
  • 15. IPCC. 2014. IPCC’s Fifth Assessment Report (WGII AR5) Climate Change (2014), Impacts, Adaptation, and Vulnerability. available at: http://www.ipcc.ch/report/ar5/wg2
  • 16. IPCC. 2018. Intergovernmental Panel on Climate Change, Global warming of 1.5 °C: an IPCC special report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, available at: http://www.ipcc.ch/report/sr15/ .
  • 17. Kadiyevskyy, V. and Klymenko, N. 2014. Systemic vision of ecological and economic interaction of landuse factors in modern agrosphere. Actual Problems of Economics, 152(2), 313-320.
  • 18. Kalenska, S., Yeremenko, O., Novictska, N., Yunyk A., Honchar, L., Cherniy, V., Stolayrchuk, T., Kalenskyi, V., Scherbakova, O., and Rigenko, A. 2019. Enrichment of field crops biodiversity in conditions of climate changing. Ukrainian Journal of Ecology, 9 (1), 19-24.
  • 19. Kassie, M., Teklewold, H., Jaleta, M., Marenya, P. and Erenstein, O. 2015.Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy, 42, 400-411. DOI:10.1016/j.landusepol.2014.08.016
  • 20. Lal Pandey, C. 2014. The limits of climate change agreements: from past to present. International Journal of Climate Change Strategies and Management, 6(4), 376-390. DOI:10.1108/IJCCSM-03-2013-0026
  • 21. Morison, J.1996. Climate change and crop growth. Environmental Management and Health, 7(2), 4-27. DOI:10.1108/09566169610112980
  • 22. Müller, C., Cramer, W., Hare, W.L.and LotzeCampen, H. 2011.Climate change risks for African agriculture. Proc. Natl. Acad. Sci., 108 (11), 43134315. DOI:10.1073/pnas.1015078108
  • 23. Nechyporenko, O. 2016. Status and prospects of the Ukrainian economy’s agricultural sector adaptation to global climate changes. Ukrainian journal Economist, 11, 10-14.
  • 24. Noltze, M., Schwarze, S. and Qaim M. 2013. Understanding the adoption of system technologies in smallholder agriculture: the system of rice intensification (SRI) in Timor Leste. Agricultural Systems, 108, 64-73. DOI:10.1016/j.agsy.2012.01.003
  • 25. Ollila, A. 2019. Challenging the scientific basis of the Paris climate agreement. International Journal of Climate Change Strategies and Management, 11(1), 18-34. DOI:10.1108/IJCCSM-05-2017-0107
  • 26. Pace, C. 2015. Genomic tools and plant genes to mitigate impacts of climate change and extreme environments. Holistic Access to Research on Vegetables, Economies, Societies and Technology, 10, 553–568.
  • 27. Panasiuk, B. 2015. Global climate change and the economy. Ekonomika APK, 11, 14-24, available at: http://eapk.org.ua/contents/2015/11/14
  • 28. Passel, S., Massetti E., Mendelsohn, R. 2017. A ricardian analysis of the impact of climate change on European agriculture. Environmental and Resource Economics, 67, 725-760. DOI:10.1007/s10640-016-0001-y
  • 29. Prokopenko, K. and Udova, L. 2017.Ukrainian agriculture: challenges and ways of development under the climate change. Economy and Forecasting, 1, 92104, available at: eip.org.ua › docs › EP_17_1_92_uk.
  • 30. Ren, Z. and Lin, Y. 2001. Global warming and its astro‐causes. Kybernetes, 30(4), 411-433. DOI:10.1108/03684920110386928
  • 31. Report OCHA.2019. Natural Disasters in Latin America and the Caribbean, 2000-2019, available at: https://reliefweb.int/sites/reliefweb.int/files/resources/20191203-ocha-desastres_naturales.pdf
  • 32. Rosenzweig, C., Iglesias, A., Yang, X.B., Epstein, P.R. and Chivian, E. 2001. Climate change and extreme weather events: Implications for food production, plant diseases, and pests. Glob. Change Hum. Health, 2, 90-104. DOI:10.1023/A:1015086831467
  • 33. Rudych, O. 2018. Natural and climatic conditions as a risk factor for agricultural production in Ukraine. Sustainable Development of Economy, 2(39), 14-21.
  • 34. Selvaraju, R, Gommes, R. and Bernardi, M. 2011. Climate science in support of sustainable agriculture and food security. Climate Research, 47(1-2), 95–110. DOI:10.3354/cr00954
  • 35. Shannon R. and Motha, P.2015. Managing weather and climate risks to agriculture in North America, Central America and the Caribbean. Weather and Climate Extremes, 10(A), 50-56. DOI:10.1016/j.wace.2015.10.006
  • 36. Siwiec, E. 2015. Losses and expenditures caused by extreme events in Poland. Disaster Prevention and Management, 24(5), 553-569. DOI:10.1108/DPM-03-2014-0047
  • 37. Skrypnyk, A., Klymenko, N., Talavyria, M., Goray, A. and Namiasenko, Y.2019. Bioenergetic potential assessment of the agricultural sector of the Ukrainian economy. International Journal of Energy Sector Management,14 (2), 468-481. DOI:10.1108/IJESM-04-2019-0015
  • 38. SSC. 2018. Agriculture of Ukraine. Statistical collection of State Statistics Service of Ukraine, Kyiv, available at: www.ukrstat.gov.ua
  • 39. Tesfahun, W. 2018.Climate change mitigation and adaptation through biotechnology approaches: A review. Cogent Food and Agriculture, 4, 1-12. DO I:10.1080/23311932.2018.1512837
  • 40. Tsytsyura, Y.2017. Adaptive strategy of agriculture of the right-bank Ukrainian forest-steppe in the conditions of climate change. Agriculture and Forestry, 5, 25-33.
  • 41. Tun Oo, A., Van Huylenbroeck, G. and Speelman, S. 2017. Determining factors for the application of climate change adaptation strategies among farmers in Magwe District, dry zone region of Myanmar. International Journal of Climate Change Strategies and Management, 9(1), 36-55. DOI:10.1108/IJCCSM-09-2015-0134
  • 42. Voronenko, I., Skrypnyk, A., Klymenko, N., Zherlitsyn, D., and Starychenko, Y. 2020. Food security risk in Ukraine: assessment and forecast. Agricultural and Resource Economics: International Scientific E-Journal, 6(4), 63-75. DOI:10.51599/are.2020.06.04.04
  • 43. World Economic Forum.2 018 The Global Risks Report 2018 (13th ed.) , World Economic Forum, Geneva, available at: https://www.weforum.org/reports/the-global-risks-report-2018
  • 44. Xiong W., Holman I.P., Lin E., Conway D., Li Y. and Wu W. 2012.Untangling relative contributions of recent climate and CO2 trends to national cereal production in China. Environmental Research Letters, 7(4), 14-44. DOI:10.1088/1748-9326/7/4/044014
  • 45. York, R., Rosa, E. and Dietz, T. 2003. A rift in modernity? assessing the anthropogenic sources of global climate change with the STIRPAT model. International Journal of Sociology and Social Policy, 23(10), 31-51. DOI:10.1108/01443330310790291
  • 46. Zhou, S., Zhou, W., Lin, G., Chen, J., Jiang, T. and Li, M. 2017. Adapting to climate change: scenario analysis of grain production in China. China Agricultural Economic Review, 9(4). DOI:10.1108/CAER-10-2016-0173
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d004ae01-1129-4c5c-87cb-2b94d54d1af6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.