Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Coastal storms as extreme hydrometeorological events have severe impacts on the coasts and consequently affect the coastal communities, attracting considerable research interest nowadays. Attempting to understand the risk of these extreme events, a coastal storm analysis is accomplished by studying the parameters which define a coastal storm and their properties, such as the wave height, the wave period, the duration, the calm period, and the storm energy. The frequency of occurrence of coastal storms, the thresholds of storm parameters and the way they are interrelating with each other draw a rough outline of wave climate during coastal storm events for a specific location. This information is valuable afterwards for the design of coastal structures and the coastal zone management. In this work, buoy datasets from 30 locations in the Mediterranean Sea are analysed for describing coastal storm activity. A sample of 4008 coastal storms is identified. Each location faces around 10-14 coastal storms per year, with most of them to occur in winter months and their characteristics to be site-dependent. Their average duration is lower than 30 hours, and 25% of them are consecutive events which hit the same location in less than a day. Furthermore, the wave period and the main direction present no remarkable fluctuations during a coastal storm. With this analysis, a deeper understanding of coastal storm severity is pursued, gaining knowledge about their past activity, in order to be prepared in the future and to protect the coastal areas.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
133--148
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
autor
- Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens 5, Zografou, Greece
autor
- Hydraulics Laboratory, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
autor
- Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens 5, Zografou, Greece
autor
- Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens 5, Zografou, Greece
Bibliografia
- [1] Almeida, L. P., Ferreira, Ó., Vousdoukas, M. I., Dodet, G., 2011. Historical variation and trends in storminess along the Portuguese South Coast. Nat. Hazards Earth Syst. Sci. 11, 2407-2417. https://doi.org/10.5194/nhess-11-2407-2011.
- [2] Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., Krestenitis, Y. N., 2015. Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dyn. Atmos. Ocean. 71, 56-82. https://doi.org/10.1016/j.dynatmoce.2015.06.001.
- [3] Arns, A., Wahl, T., Haigh, I. D., Jensen, J., Pattiaratchi, C., 2013. Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise. Coast. Eng. 81, 51-66. https://doi.org/10.1016/j.coastaleng.2013.07.003.
- [4] Bernardara, P., Mazas, F., Kergadallan, X., Hamm, L., 2014. A two-step framework for over-threshold modelling of environmental extremes. Nat. Hazards Earth Syst. Sci. 14, 635-647. https://doi.org/10.5194/nhess-14-635-2014.
- [5] Bertin, X., Bruneau, N., Breilh, J.-F., Fortunato, A. B., Karpytchev, M., 2012. Importance of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay. Ocean Model 42, 16-30. https://doi.org/10.1016/j.ocemod.2011.11.001.
- [6] Bezak, N., Brilly, M., Šraj, M., 2014. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrol. Sci. J. 59, 959-977. https://doi.org/10.1080/02626667.2013.831174.
- [7] Binder, S. B., Baker, C. K., Barile, J. P., 2015. Rebuild or Relocate? Resilience and Postdisaster Decision-Making After Hurricane Sandy. Am. J. Community Psychol. 56, 180-196. https://doi.org/10.1007/s10464-015-9727-x.
- [8] Boccotti, P., 2014. Wave Mechanics and Wave Loads on Marine Structures, 1st edn., Butterworth-Heinemann.
- [9] Boccotti, P., 2000. Chapter 6 The Wave Climate. In: Elsevier Oceanography Series. Elsevier Science, 183-206. https://doi.org/10.1016/S0422-9894(00)80032-X.
- [10] Caires, S., Sterl, A., 2005. 100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data. J. Clim. 18, 1032-1048. https://doi.org/10.1175/JCLI-3312.1.
- [11] Callaghan, D. P., Nielsen, P., Short, A., Ranasinghe, R., 2008. Statistical simulation of wave climate and extreme beach erosion. Coast. Eng. 55, 375-390. https://doi.org/10.1016/j.coastaleng.2007.12.003.
- [12] Cavicchia, L., von Storch, H., Gualdi, S., 2014. Mediterranean Tropical-Like Cyclones in Present and Future Climate. J. Clim. 27, 7493-7501. https://doi.org/10.1175/JCLI-D-14-00339.1
- [13] Ciavola, P., Ferreira, O., Dongeren, A.Van, Vries, J. V. T.de, Armaroli, C., Harley, M., 2014. Prediction of Storm Impacts on Beach and Dune Systems. In: Hydrometeorological Hazards. John Wiley & Sons, Ltd., Chichester, UK, 227-252. https://doi.org/10.1002/9781118629567.ch3d.
- [14] Ciavola, P., Ferreira, O., Haerens, P., Van Koningsveld, M., Armaroli, C., 2011a. Storm impacts along European coastlines. Part 2: lessons learned from the MICORE project. Environ. Sci. Policy 14, 924-933. https://doi.org/10.1016/j.envsci.2011.05.009.
- [15] Ciavola, P., Ferreira, O., Haerens, P., Van Koningsveld, M., Armaroli, C., Lequeux, Q., 2011b. Storm impacts along European coastlines. Part 1: The joint effort of the MICORE and ConHaz Projects. Environ. Sci. Policy 14, 912-923. https://doi.org/10.1016/j.envsci.2011.05.011.
- [16] Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics. Springer, London, London. https://doi.org/10.1007/978-1-4471-3675-0.
- [17] Copernicus Marine In Situ Tac Data Management Team, 2018. Copernicus Marine in situ TAC — physical parameters list. https://doi.org/10.13155/53381.
- [18] Corbella, S., Pringle, J., Stretch, D. D., 2015. Assimilation of ocean wave spectra and atmospheric circulation patterns to improve wave modelling. Coast. Eng. 100, 1-10. https://doi.org/10.1016/j.coastaleng.2015.03.003.
- [19] Corbella, S., Stretch, D., 2012a. Multivariate return periods of sea storms for coastal erosion risk assessment. Nat. Hazards Earth Syst. Sci. 12, 2699-2708. https://doi.org/10.5194/nhess-12-2699-2012.
- [20] Corbella, S., Stretch, D. D., 2013. Simulating a multivariate sea storm using Archimedean copulas. Coast. Eng. 76, 68-78. https://doi.org/10.1016/j.coastaleng.2013.01.011.
- [21] Corbella, S., Stretch, D. D., 2012b. Predicting coastal erosion trends using non-stationary statistics and process-based models. Coast. Eng. https://doi.org/10.1016/j.coastaleng.2012.06.004.
- [22] Davies, G., Callaghan, D. P., Gravois, U., Jiang, W., Hanslow, D., Nichol, S., Baldock, T., 2017. Improved treatment of nonstationary conditions and uncertainties in probabilistic models of storm wave climate. Coast. Eng. 127, 1-19. https://doi.org/10.1016/j.coastaleng.2017.06.005.
- [23] De Michele, C., Salvadori, G., Passoni, G., Vezzoli, R., 2007. A multivariate model of sea storms using copulas. Coast. Eng. 54, 734-751. https://doi.org/10.1016/j.coastaleng.2007.05.007.
- [24] Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-597. https://doi.org/10.1002/qj.828.
- [25] Dey, D., Roy, D., Yan, J., 2015. Univariate Extreme Value Analysis. In: Extreme Value Modeling and Risk Analysis. Chapman and Hall/CRC, 1-22. https://doi.org/10.1201/b19721-2.
- [26] Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015. Effects of storm clustering on beach/dune evolution. Mar. Geol. 370, 63-75. https://doi.org/10.1016/j.margeo.2015.10.010.
- [27] Dolan, R., Davis, R., 1992. An Intensity Scale for Atlantic Coast Northeast Storms. J. Coast. Res. 8, 840-853.
- [28] Emanuel, K., 2005. Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci. 2, 217-220. https://doi.org/10.5194/adgeo-2-217-2005.
- [29] Ferguson, T. S., Genest, C., Hallin, M., 2000. Kendall’s tau for serial dependence. Can. J. Stat. 28, 587-604. https://doi.org/10.2307/3315967.
- [30] Ferreira, J. A., Guedes Soares, C., 1998. An Application of the Peaks Over Threshold Method to Predict Extremes of Significant Wave Height. J. Offshore Mech. Arct. Eng. 120, 165-176. https://doi.org/10.1115/1.2829537.
- [31] Ferreira, Ó., 2005. Storm Groups versus Extreme Single Storms: Predicted Erosion and Management Consequences. J. Coast. Res. 221-227.
- [32] Ferreira, Ó., Plomaritis, T. A., Costas, S., 2017. Process-based indicators to assess storm induced coastal hazards. Earth-Science Rev 173, 159-167. https://doi.org/10.1016/j.earscirev.2017.07.010.
- [33] Freitas, E., da, S., Coelho, V. H. R., Xuan, Y., Melo, D., de, C. D., Gadelha, A. N., Santos, E. A., Galvão, C., de, O., Ramos Filho, G. M., Barbosa, L. R., Huffman, G. J., Petersen, W. A., Almeida, C., das, N., 2020. The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties. J. Hydrol. 589, 125-128. https://doi.org/10.1016/j.jhydrol.2020.125128.
- [34] Gervais, M., Balouin, Y., Belon, R., 2012. Morphological response and coastal dynamics associated with major storm events along the Gulf of Lions Coastline, France. Geomorphology 143-144, 69-80. https://doi.org/10.1016/j.geomorph.2011.07.035.
- [35] González-Alemán, J. J., Pascale, S., Gutierrez-Fernandez, J., Murakami, H., Gaertner, M. A., Vecchi, G. A., 2019. Potential Increase in Hazard From Mediterranean Hurricane Activity With Global Warming. Geophys. Res. Lett. 46, 1754-1764. https://doi.org/10.1029/2018GL081253.
- [36] Harley, M., 2017. Coastal Storm Definition. In: Coastal Storms. John Wiley & Sons, Ltd, Chichester, UK, 1-21. https://doi.org/10.1002/9781118937099.ch1.
- [37] Hollander, M., Wolfe, D., Chicken, E., 2015. Nonparametric Statistical Methods, Wiley Series in Probability and Statistics. Wiley, New York. https://doi.org/10.1002/9781119196037.
- [38] IPCC, 2019. Special Report on the Ocean and Cryosphere in a Changing Climate [WWW Document]. URL https://www.ipcc.ch/srocc/.
- [39] IPCC, 2018. Global Warming of 1.5°C [WWW Document]. URL https://www.ipcc.ch/sr15/.
- [40] Irish, J. L., Resio, D. T., Ratcliff, J. J., 2008. The Influence of Storm Size on Hurricane Surge. J. Phys. Oceanogr. 38, 2003-2013. https://doi.org/10.1175/2008JPO3727.1.
- [41] Jammalamadaka, S. R., SenGupta, A., 2001. Topics in Circular Statistics, Series on Multivariate Analysis. WORLD SCIENTIFIC. https://doi.org/10.1142/4031.
- [42] Jarušková, D., Hanek, M., 2006. Peaks over threshold method in comparison with block-maxima method for estimating return levels of several northern Moravia precipitation and discharges series. J. Hydrol. Hydromech. 54, 309-319.
- [43] Jean, M.-È., Duchesne, S., Pelletier, G., Pleau, M., 2018. Selection of rainfall information as input data for the design of combined sewer overflow solutions. J. Hydrol. 565, 559-569. https://doi.org/10.1016/j.jhydrol.2018.08.064.
- [44] Karavokiros, G., Lykou, A., Koutiva, I., Batica, J., Kostaridis, A., Alves, A., Makropoulos, C., 2016. Providing Evidence-Based, Intelligent Support for Flood Resilient Planning and Policy: The PEARL Knowledge Base. Water 8, 392. https://doi.org/10.3390/w8090392.
- [45] Kates, R. W., Colten, C. E., Laska, S., Leatherman, S. P., 2006. Reconstruction of New Orleans after Hurricane Katrina: A research perspective. Proc. Natl. Acad. Sci. 103, 14653-14660. https://doi.org/10.1073/pnas.0605726103.
- [46] Kereszturi, M., Tawn, J., Jonathan, P., 2016. Assessing extremal dependence of North Sea storm severity. Ocean Eng 118, 242-259. https://doi.org/10.1016/j.oceaneng.2016.04.013.
- [47] Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., Fiorino, M., 2001. The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bull. Am. Meteorol. Soc. 82, 247-267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.
- [48] Li, F., van Gelder, P. H. A. J. M., Ranasinghe, R., Callaghan, D. P., Jongejan, R. B., 2014. Probabilistic modelling of extreme storms along the Dutch coast. Coast. Eng. 86, 1-13. https://doi.org/10.1016/j.coastaleng.2013.12.009.
- [49] Li, F., Zhou, J., Liu, C., 2018. Statistical modelling of extreme storms using copulas: A comparison study. Coast. Eng. 142, 52-61. https://doi.org/10.1016/j.coastaleng.2018.09.007.
- [50] Lin-Ye, J., Garcia-Leon, M., Gracia, V., Sanchez-Arcilla, A., 2016. A multivariate statistical model of extreme events: An application to the Catalan coast. Coast. Eng. 117, 138-156. https://doi.org/10.1016/j.coastaleng.2016.08.002.
- [51] Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S. O., Jansà, A., Maheras, P., Sanna, A., Trigo, I. F., Trigo, R., 2006. Chapter 6 Cyclones in the Mediterranean region: Climatology and effects on the environment. 325-372. https://doi.org/10.1016/S1571-9197(06)80009-1.
- [52] Lionello, P., Cogo, S., Galati, M. B., Sanna, A., 2008. The Mediterranean surface wave climate inferred from future scenario simulations. Glob. Planet. Change 63, 152-162. https://doi.org/10.1016/j.gloplacha.2008.03.004.
- [53] Lionello, P., Galati, M. B., Elvini, E., 2012. Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. Phys. Chem. Earth, Parts A/B/C 40-41, 86-92. https://doi.org/10.1016/j.pce.2010.04.001.
- [54] Lionello, P., Trigo, I. F., Gil, V., Liberato, M. L. R., Nissen, K. M., Pinto, J. G., Raible, C. C., Reale, M., Tanzarella, A., Trigo, R. M., Ulbrich, S., Ulbrich, U., 2016. Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A Dyn. Meteorol. Oceanogr. 68, art. no. 29391. https://doi.org/10.3402/tellusa.v68.29391.
- [55] Lira-Loarca, A., Cobos, M., Losada, M. Á., Baquerizo, A., 2020. Storm characterization and simulation for damage evolution models of maritime structures. Coast. Eng. 156, art. no. 103620. https://doi.org/10.1016/j.coastaleng.2019.103620.
- [56] Martzikos, N., Afentoulis, V., Tsoukala, V., 2018. Storm clustering and classification for the port of Rethymno in Greece. Water Util. J. 67-69.
- [57] Masselink, G., Austin, M., Scott, T., Poate, T., Russell, P., 2014. Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach. Geomorphology 226, 76-93. https://doi.org/10.1016/j.geomorph.2014.07.025.
- [58] Mazas, F., Hamm, L., 2011. A multi-distribution approach to POT methods for determining extreme wave heights. Coast. Eng. 58, 385-394. https://doi.org/10.1016/j.coastaleng.2010.12.003.
- [59] Méndez, F. J., Menéndez, M., Luceño, A., Losada, I. J., 2006. Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. J. Geophys. Res. 111, art. no. C07024. https://doi.org/10.1029/2005JC003344.
- [60] Menéndez, M., Méndez, F. J., Izaguirre, C., Luceño, A., Losada, I. J., 2009. The influence of seasonality on estimating return values of significant wave height. Coast. Eng. 56, 211-219. https://doi.org/10.1016/j.coastaleng.2008.07.004.
- [61] OceanSITES, 2015. OceanSITES Data Format Reference Manual.
- [62] R Core Team, 2020. R: A language and environment for statistical computing.
- [63] Rangel-Buitrago, N., 2011. An application of Dolan and Davis (1992) classification to coastal storms in SW Spanish littoral. ics2011.pl.
- [64] Rosenzweig, C., Solecki, W., 2014. Hurricane Sandy and adaptation pathways in New York: Lessons from a first-responder city. Glob. Environ. Chang. 28, 395-408. https://doi.org/10.1016/j.gloenvcha.2014.05.003.
- [65] Ruggiero, P., Komar, P. D., Allan, J. C., 2010. Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coast. Eng. 57, 539-552. https://doi.org/10.1016/j.coastaleng.2009.12.005.
- [66] Salvadori, G., Tomasicchio, G. R., D’Alessandro, F., 2014. Practical guidelines for multivariate analysis and design in coastal and off-shore engineering. Coast. Eng. 88, 1-14. https://doi.org/10.1016/j.coastaleng.2014.01.011.
- [67] Sartini, L., Besio, G., Cassola, F., 2017. Spatio-temporal modeling of extreme wave heights in the Mediterranean Sea. Ocean Model 117, 52-69. https://doi.org/10.1016/j.ocemod.2017.07.001.
- [68] Sénéchal, N., Castelle, B., Bryan, K. R., 2017. Storm Clustering and Beach Response. In: Coastal Storms. John Wiley & Sons, Ltd., Chichester, UK, 151-174. https://doi.org/10.1002/9781118937099.ch8.
- [69] Tsoukala, V. K., Chondros, M., Kapelonis, Z. G., Martzikos, N., Lykou, A., Belibassakis, K., Makropoulos, C., 2016. An integrated wave modelling framework for extreme and rare events for climate change in coastal areas — The case of Rethymno, Crete. Oceanologia 58 (2), 71-89. https://doi.org/10.1016/j.oceano.2016.01.002.
- [70] UNFCCC, 2016. Report of the Conference of the Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015 Conf. CoP 21, FCCC/CP/2015/10, United Nation Framework Convention on Climate Change, 16 pp.
- [71] USGCRP, 2018. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, II Vol., Washington, DC. https://doi.org/10.7930/NCA4.2018.
- [72] Van Dongeren, A., Ciavola, P., Viavattene, C., de Kleermaeker, S., Martinez, G., Ferreira, O., Costa, C., McCall, R., 2014. RISC-KIT: Resilience-Increasing Strategies for Coasts — toolKIT. J. Coast. Res. 70, 366-371. https://doi.org/10.2112/SI70-062.1.
- [73] Vinoth, J., Young, I. R., 2011. Global Estimates of Extreme Wind Speed and Wave Height. J. Clim. 24, 1647-1665. https://doi.org/10.1175/2010JCLI3680.1.
- [74] Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., Feyen, L., 2016. Projections of extreme storm surge levels along Europe. Clim. Dyn. 47, 3171-3190. https://doi.org/10.1007/s00382-016-3019-5.
- [75] Wahl, T., Plant, N. G., Long, J. W., 2016. Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico. J. Geophys. Res. Ocean. 121, 3029-3043. https://doi.org/10.1002/2015JC011482.
- [76] Williams, J., Horsburgh, K. J., Williams, J. A., Proctor, R. N. F., 2016. Tide and skew surge independence: New insights for flood risk. Geophys. Res. Lett. 43, 6410-6417. https://doi.org/10.1002/2016GL069522.
- [77] Yevjevich, V. M., 1967. An objective approach to definitions and investigations of continental hydrologic droughts. J. Hydrol. 23.
- [78] Zanuttigh, B., 2011. Coastal flood protection: What perspective in a changing climate? The THESEUS approach. Environ. Sci. Policy 14, 845-863. https://doi.org/10.1016/j.envsci.2011.03.015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d002409f-58a5-4263-abe6-9ef90721ecd7