INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2017) Vol.% 233-222

USING FREQUENT PATTERN MINING ALGORITHMS
IN TEXT ANALYSIS

PIOTR OzZDZzYNSKI, DANUTA ZAKRZEWSKA

Institute of Information Technology, Lodz Universif Technology

In text mining, effectiveness of methods dependslocument representations.
The ones based on frequent word sequences arénusach tasks as categorization,
clustering and topic modelling. In the paper a carigon of different algorithms for
finding frequent word sequences is presented. Tlaeee considered techniques
dedicated for market basket analysis such as G8PPagfixSpan as well as a
method based on a suffix array. The investigaterigues are compared with the
new approach of searching maximum frequent wordieseces in document sets.

Performance of the algorithms is examined takirig account execution times for
the considered test collections.

Keywords: GSP, SuffixArray, PrefixSpan, N-Gramginent sequence

1. Introduction

Nowadays text document analysis became a very iaporpart of
information retrieval process. One of the main ésswnnected with this task
concerns the choice of document representatioran&sof the most popular, there
should be mentioned a bag-of-words representatdrich was used in such
algorithms as Rocchio [1], BM25 [2] or SVM [3]. Hewer, there are several
disadvantages of these techniques. The first omeetns polysemy property,
which is connected with multi meanings of the savoed. The next one is related
to synonymy where multiple words have the same inggd]. To avoid arising
problems, phrases instead of words may be useds®&h seem to be more

intuitive, less ambiguous and more discriminati@wever, on the other hand
phrases have low frequency and some of them aumdeait and meaningless.

To recognize meaning of phrases in the text a cetmpet of information
about all their subsequences together with infolonatconcerning their
connections may be useful. Therefore, the structurthe form of graph, with
frequent sequences represented by nodes can befarsdext representation
building. Such structure for a single n-gram nalpriesented in Fig. 1. Each node
holds information about words in a sequence andipos of each appearance of
this sequence. Additionally, references to shatdrsequences are stored. On the
other side, there are used two lists with referemadonger sequences. The first list
holds links to all sequences that start with thesabered sequence and the second
one contains references to sequences which endhisteequence.

In the paper algorithms for finding frequent sequeenof words are examined.
There is compared the performance of such algosithe GSP, PrefixSpan and
SuffixArray as well as of the new approach for firgdmaximum frequent word
sequences called SequenceJoining. Additionallylatstealgorithm enables to build
described above node structure.

The remainder of the paper is organized as folldmvthe next section, related
work concerning finding frequent sequences in tidduments is depicted. Next,
all the examined algorithms are shortly descridedthe following section the
experiments, which aim at comparing the performafcagorithms are presented
and their results are discussed. Finally, someladimg remarks are depicted.

2. Related work

Frequent pattern mining algorithms have been widesklyd in many real life
problems. Broad review of the techniques and tgalications is presented in [5].
Researchers have developed some of the frequeatrpatining algorithms to be
used in text mining area. Garcia-Hernandez etndlicated that main difference
between searching for frequent patterns in textsiartransactions concerns the
ratio of numbers of transactions and attributestekt mining there may occur a
small number of items with big nhumber of documemtsg algorithms based on
finding all possible candidates may not be effitiemough [6]. The authors
proposed the algorithm, that use the pattern-grosttategy which process the
documents in an incremental way. The algorithm pced an array, where each
node holds identifier of a word pair, frequencyttoé pair and the list of positions
where the pair appears [6].

Zhong et al. introduced a pattern discovery tedmmiqwhich uses two
processes: pattern deploying and pattern evoltinggfine the discovered patterns
in text documents. The proposed approach allows/éscome the low-frequency
and misinterpretation problems for text mining [4jn automatic method for

214

discovering textual patterns is described in [#eTmethod is extended to find
generalized sequences in documents with additemabtations for each word.

Left parent Sequence node Right parent Sequence node
Sequence length: N - 1 Sequence length: N - 1
Words: | W, W.W, ... W,__ Words: [w,w, W, ... W,

v A

Left parent reference ® Right parent reference o |
Sequence node Sequence length: N
Words: |w, W,W, ... W, ,, W,

Positions:|p, p, P, b, --- P,

e Sequences ended with this

@ Sequences startig from this

(length N+1) (length N+1)
. “
s, |8, |8, ’ ‘sm S, s, |s, ‘ ’s[

Figure 1. Single n-gram node

3. Frequent pattern mining algorithms

In [8] frequent pattern mining algorithm has beeedifor building frequent
sequences graph in topic modeling approach. Fddibgithe required structure of
frequent N-grams the technique based on aprioriewbtion [9] has been
considered. In the current research the performahosethods of finding frequent
sequences has been compared taking into accoumt &pplications to topic
modeling. However to achieve that, the structurdéform of graph with frequent
sequences represented by nodes should be builthemze connections between
parent subsequences and child nodes should beageshem order to attain this
goal NGramLinking algorithm for frequent sequenieproposed. It is proceeded
in the step following finding sequences.

For the comparison purpose the algorithms, whiclhegainformation
concerning frequent sequences and their positi@we tbeen chosen. Required
information is further used to add links betweegussces. Such approach can be

215

applied in frequent itemset mining algorithms: B®pan and GSP; as well as
SuffixArrays dedicated to text datasets. The pentorce of all the techniques will
be compared to SequencelJoining algorithm, whicleisigned to use in topic

modeling tasks. All the mentioned algorithms arertih described in the following
subsections.

3.1. GSP algorithm

The GSP (Generalised Sequential Patterns) algofit®nhas been designed
for transactional data. The technique discovereigdized sequential patterns in
the form of taxonomy, where each sequence repiesefist of transactions and
items are included across all levels of a hierarthg pseudocode of the algorithm
is presented in Fig. 2.

In the first step, having a set of k-length seqeencall new candidate
sequences of length k+1 are generated by joiniageiisting ones. In the second
step the generated set of sequences is prunedegndrges of less than required
support value are removed. The steps are exedlitide tset of frequent sequences
is empty.

v/ Obtain a sequence in form of <x> as length-1 candid ates
v" find F ; (the set of length-1 sequential patterns), after a unique
scan of database

v’ Letk=1
Wi | e F is not empty do

-Form C w1, the set of length-(k+1) candidates from F K

-IfC k+1 IS not empty, unique database scan,

find F .1 (the set of length(k+1) sequential patterns)

Let k=k+1;

End Wile

Figure 2. Pseudocode of GSP algorithm [11]

3.2. PrefixSpan algorithm

PrefixSpan (Prefix-Projected Sequential Pattern imgjp algorithm is a
“projection-based, sequential pattern-growth apgmodor sequential pattern
mining. In this approach, a sequence databaseugsigely projected into a set of
smaller projected databases, and sequential patsgengrown in each projected
database by exploring only locally frequent fragis&fiL2].

The algorithm finds the complete set of sequemtéterns and reduces the
number of operations necessary to generate a cdadidubsequence. As
PrefixSpan based its ordered growth on prefix-c&rdexxpansion, reduced number
of “growth points” is used and projected databaees of smaller sizes. Fig. 3
presents a pseudocode of PrefixSpan algorithm.

216

I nput : A sequence database S, and the minimum support
threshold m n_sup
Qut put : The complete set of sequential patterns
Met hod: Call PrefixSpan(¢, 0, S)
Subrout i ne PrefixSpan(o, |, S§|.)
Par anet ers: o: a sequential pattern; | the length of o
S| .: «-projected database, a # <©; otherwise,
the sequence database S.
Met hod:
1. Scan S| , once, find the set of frequent items b such that
(@ b can be assembled to the last element of o to
form a sequential pattern; or
(b) < b> can be appended to o to form a sequential
pattern.
2. For each frequent item b, append it to o to form
a sequential pattern o, and output o
3. For each o', construct o’-projected database S| », and call
PrefixSpan(o’, |+1, S|.)

Figure 3. PrefixSpan pseudocode [12]

3.3. SuffixArrays algorithm

Suffix Arrays algorithm has been developed forngtrsearching [13]. Main
idea of the algorithm consists in using each wdrd document set as a first word
of a sequence. Then all the indicated sequencesrgamized alphabetically.
In fact, only an array of pointers to first wordseach sequences is sorted. Then
sequences are compared and grouped taking intaigiccamber of subsequences
of equal prefix. An example of this approach isserged in Fig. 4.

Documents:
ababec
bcbab
Subsequences | Sorted subsequences Prefixes
ababc |@b Sequence | Occurences
babc al bla b c

a 3
abc al bjc

ab 3
b c b

b 5
o ’713 b B i >
bcbab al b c

b ab 2
cbab “b c b e 5
bab bjclb ab

— (o] 2

ab [¢
b Eb ab

Figure 4. Sequences sorted by SuffixArray

217

3.4. SequenceJoining algorithm

SequencelJoining algorithm, similarly to GSP, is edason candidate
generation and their testing approach. Howeverptbposed algorithm builds data
structure which is a graph of connected nodes septeng all frequent sequences.
The algorithm starts by building a reverse bigradeki as it is presented in Fig. 5.

ab » 0 2 7 9
ba N 1 8

be " 3

bd)

Figure 5. Reverted bigram index [14]

All pairs of words are the key for a list of posits. Each position is a number
which indicates the document in the set and theebféf the first word of a bigram.
Sequences of length+ 1 are created by joining two sequences of lekgtAll
sequences of the lengkhare stored in a hash map. The keys are built ke
beginning words and are connected to lisha@frams starting with this key. For
each sequence the key from all words except teedire is created. All sequences
from the hash map linked with this key are seledisiv N-gram of lengttk+1 is
created by joining pairs with matching keys. Themart is calculated by using
lists of positions of both joined subsequences.

Since the lists are in ascending order, findingitmys of consecutive
subsequences can be realized with the complexiB(wf+ n) wherem andn mean
lengths of respective position lists. In the pregubimplementation binary search
on both lists is used alternately. Such approacl significantly increase the
efficiency of the whole algorithm. The complexitggends on the size of the result
set. Only N-grams of satisfying support are setbete frequent. These steps are
repeated for each length until the result is ngbtym

After creating a sequence of lendgiboth joined sequences are linked as the
left and right parent. Furthermore the sequencadded as a child to lists of
children in both parent sequences. Thus the redjgireicture in the form of graph
with frequent sequences represented by nodeslis bui

218

3.5. NGramLinking algorithm

Except SequenceJoining algorithm all the consideneels do not generate
connections between parent subsequences and oldikgs nTherefore, after finding
all frequent sequences additional step should kewt®d. All sequences with the
same length are stored in a hash map. For alletpgemices of the lengkfirst and
last subsequences are searched in a previouslgrpcemap. These sequences are
stored as the left and the right parents. The ntisequence is added as a child to
both parent sequences. Finally, the expected ateucs built.

4. Experiment results

The experiments aimed at comparing the performafic8SP, PrefixSpan,
SuffixArray and FrequencelJoining algorithms takingp account execution time
for different amount of text documents. There weged two document datasets:

e The OHSUMED test collection [15], which contains@mD first records of
documents from MEDLINE.

» The 20Newsgroups data set [16] - approximately @Dyewsgroup
documents.

During experiments there were used implementatioh$sSP and PrefixSpan
algorithms in SPMF, which is an open-source datainygilibrary written in Java,
dedicated to pattern mining [17]. As original implentations are prepared for
searching patterns of itemsets, the modificatioasehbeen done and finally
itemsets were represented by words. The remainflalgorithms were also
implemented in Java software. All the tests weraedon PC with a processor
Intel®Core™ i3-540, (4M Cache, 3.06 GHz).

The experiments were carried out for different nembf documents taking
into account different required support values. dbwer for each algorithm its
performance was checked on raw as well as premedewith stop-list and
stemming data.

PrefixSpan and SuffixArray algorithms had similan times. Additional step
used by NGramLinking occurred to be insignificanThe proposed
SequenceJoining algorithm was faster for smaller sets (1,5 million and less
words). Run time of SequenceJoining was signifigardduced for result sets of
smaller sizes. Such a fact took place for highppett thresholds. It means that an
execution time of this algorithm depends on numbafrssequences with the
successive lengths. The same dependence have eotnodiced for the other
algorithms. In all the cases, execution time forPG&nsiderably exceeded run
times of the other algorithms. The results forta# algorithms except GSP and
different parameter values are presented in Fily) B0t

219

om.dat (THR = 20)
80.0

PrefixSpan ——
0.0 SuffixArrays

N Sequenceldoining —«—
60.0 SuffixArrays+NGramLinking

50.0

40.0
30.0

Execution time (s)

20.0
10.0

00 L=
00 5000k 10M 15M 20M 25M 30M 35M 40M 45M

Mumber of words (M)

Figure 6. Execution time for OHSUMED with threshold 20

om.dat (THR = 50)
30.0 -
PrefixSpan —+—
SuffixArrays
25.0 Sequencedoining ——
= SuffixArrays+NGramLinking
= 200
@
E
5 15.0)
5 i
£ 100 P
i
5.0
00

00 5000k 10M 15M 20M 25M 30M 35M 40M 45M

Number of wards [N}

Figure 7. Execution time for OHSUMED with threshold 50

om-sl-stm.dat (THR = 50)

12.0
PrefixSpan ——

SuffixArrays
10.0 SequenceJoining —s—

SuffixArrays+NGramLinking /
8.0

Execution time (s)

20

0.0
0.0 500.0k 1.0M 15M 20M 25M 30M

Number of words (M)

Figure 8. Run time OHSUMED (threshold 50) without stop-weadfter stemming

220

ng-sl-stm.dat (THR = 50)

PrefixSpan —+—
12.0 SuffixArrays

SequenceJoining —%—
10.0 SuffixArrays+NGramLinking
5.0 -

0.0
00 5000k 1.0M 15M 20M 25M 30M 35M

MNumber of words (N)

Figure 9. Run time 20Newsgroups (threshold 50) without stapels after stemming

Execution time (s)

ng.dat
70.0
PrefixSpan —+—

- SuffixArrays

60.0 Sequencedoining —s—
- SuffixArrays+MNGramLinking
== 500
@
E
5 400
‘5
@ 300 | =
it \‘\

200 h

10.0

0 100 200 300 400 500 800

Minimal support (THR)

Figure 10.Time of execution for 20Newsgroups depending oaghold

5. Concluding remarks

In the paper the performance of frequent patternimgi algorithms GSP,
PrefixSpan, SuffixArray and the new approach Segedoining were considered.
In the case of the first three algorithms additistap of building graph structure
has been proposed. Experiments have shown thattimenof all the algorithms
except GSP is of similar range. Execution time @duced for higher support
thresholds, when the result sets are smaller. Tygpué&hcedoining gave the best
results for small document datasets. This feata® ot been observed for the
other examined algorithms.

221

REFERENCES

[1]
(2]
[3]
[4]
[5]
[6]

[7]
(8]

[9]

[10]
[11]

[12]

[13]
[14]
[15]

[16]
[17]

Manning Ch. D., Raghavan P, Schitze H. (2088) Introduction to Information
Retrieval] Cambridge University Press.

Robertson S., Zaragoza H. (200B)e Probabilistic Relevance Framework: BM25
and BeyondFound. Trends Inf. Retr, 3(4), 333—-389.

Burges Ch. J. C. (1998A Tutorial on Support Vector Machines for Pattern
Recognition Data Mining and Knowledge Discovery, 2, 121-167.

Zhong N., Li Y., Wu Sh.-T. (201&ffective Pattern Discovery for Text MiningEE
Transactions on Data Engineering, 24(1), 30-44.

Aggarwal Ch. C., Han J. [eds] (2014jrequent Pattern Mining Springer
International Publishing Switzerland.

Garcia-Hernandez R. A., Martinez-Trinidad J.F.,r@sgo-Ochoa J.A. (2018)jnding
maximal sequential patterns in text document cttbes and single documents
Informatica, 34, 93-101.

Ahonen-Myka H. (2002piscovery of frequent word sequences in,tBxoc. the ESF
Exploratory Workshop on Pattern Detection and Discg, London, UK, 180-189.
Ozdzynski P., Zakrzewska D. (201 7opic Modeling Based on Frequent Sequences

Graphs Swigtek J., Tomczak J.M. (edsAgdvances in Systems Scign&dvances in
Intelligent Systems and Computing 539, Springegrimitional Publishing, 86-97.

Agrawal, R., Srikant R. (1994jast algorithms for mining association rules indar
databasesProc. the 20th International Conference on Verygkdbata Bases, VLDB,
Morgan Kaufmann Publishers Inc., San Francisco, T34, 487-499.

Agrawal R., Srikant R. (1999%)lining sequential patterngroc. 1995 Int. Conf. Data
Engineering (ICDE’95), 3-14

Slimani T., Lazzez A., (2013 equential Mining: Patterns and Algorithms Analysis
International Journal of Computer and Electronieséarch, 2 (5), 639-647.

Pei J, Han J., Mortazavi-Asl J., Pinto H., Chen Qayal U., Hsu M. (2001)
PrefixSpan: Mining Sequential Patterns Efficienthy Prefix-Projected Pattern
Growth Proc. 2001 Int. Conf. Data Engineering (ICDE),(15-224.

Manber U., Myers G. (198Fuffix arrays: A new method for on-line string sees
SODA 90 Proc. the first ACM-SIAM symposium on Diste algorithms, 319-327.

Ozdzynski P. (2014) Text Document Categorization Based on Word Frequent
Sequence Miningnformation Systems Architecture and Technologgntemporary
Approaches to Design and Evaluation of Informatystems, 129-138.

ftp://medir.ohsu.edu/pub/ohsumed
http://www.ai.mit.edu/people/jrennie/20Newsgroups/

Fournier-Viger, P., Lin, C.W., Gomariz, A., GueniT., Soltani, A., Deng, Z., Lam,
H. T. (2016).The SPMF Open-Source Data Mining Library VersiorP2oc. PKDD
2016 Part I, Springer LNCS 9853, 36-40.

222

