
 
 

INFORMATION 
SYSTEMS  IN  

MANAGEMENT Information Systems in Management (2017)  Vol. 6 (3)  213−222 

USING FREQUENT PATTERN MINING ALGORITHMS  
IN TEXT ANALYSIS  

PIOTR OŻDŻYŃSKI, DANUTA ZAKRZEWSKA 
 Institute of Information Technology, Lodz University of Technology 

In text mining, effectiveness of methods depends on document representations. 
The ones based on frequent word sequences are used in such tasks as categorization, 
clustering and topic modelling. In the paper a comparison of different algorithms for 
finding frequent word sequences is presented. There are considered techniques 
dedicated for market basket analysis such as GSP and PrefixSpan as well as a 
method based on a suffix array. The investigated techniques are compared with the 
new approach of searching maximum frequent word sequences in document sets. 
Performance of the algorithms is examined taking into account execution times for 
the considered test collections.  

Keywords: GSP, SuffixArray, PrefixSpan, N-Gram, frequent sequence 

1. Introduction 

Nowadays text document analysis became a very important part of 
information retrieval process. One of the main issue connected with this task 
concerns the choice of document representation. As one of the most popular, there 
should be mentioned a bag-of-words representation, which was used in such 
algorithms as Rocchio [1], BM25 [2] or SVM [3]. However, there are several 
disadvantages of these techniques. The first one concerns polysemy property, 
which is connected with multi meanings of the same word.  The next one is related 
to synonymy where multiple words have the same meaning [4]. To avoid arising 
problems,  phrases instead of words may be used. Phrases seem to be more 



214 

intuitive, less ambiguous and more discriminative. However, on the other hand 
phrases have low frequency and some of them are redundant and meaningless. 

To recognize meaning of phrases in the text a complete set of information 
about all their subsequences together with information concerning their 
connections may be useful. Therefore, the structure in the form of graph, with 
frequent sequences represented by nodes can be used for text representation 
building. Such structure for a single n-gram node is presented in Fig. 1.  Each node 
holds information about words in a sequence and positions of each appearance of 
this sequence. Additionally, references to shorter subsequences are stored. On the 
other side, there are used two lists with references to longer sequences. The first list 
holds links to all sequences that start with the considered sequence and the second 
one contains references to sequences which end with this sequence. 

In the paper algorithms for finding frequent sequences of words are examined. 
There is compared the performance of such algorithms as GSP, PrefixSpan and 
SuffixArray as well as of the new approach for finding maximum frequent word 
sequences called SequenceJoining. Additionally, the last algorithm enables to build 
described above node structure. 

The remainder of the paper is organized as follows. In the next section, related 
work concerning finding frequent sequences in text documents is depicted. Next, 
all the examined algorithms are shortly described. In the following section the 
experiments, which aim at comparing the performance of algorithms are presented 
and their results are discussed. Finally, some concluding remarks are depicted. 

2. Related work 

Frequent pattern mining algorithms have been widely used in many real life 
problems. Broad review of the techniques and their applications is presented in [5]. 
Researchers have developed some of the frequent pattern mining algorithms to be 
used in text mining area. Garcia-Hernández et al. indicated that main difference 
between searching for frequent patterns in texts and in transactions concerns the 
ratio of numbers of transactions and attributes. In text mining there may occur a 
small number of items with big number of documents, and algorithms based on 
finding all possible candidates may not be efficient enough [6]. The authors 
proposed the algorithm, that use the pattern-growth strategy which process the 
documents in an incremental way. The algorithm produces an array, where each 
node holds identifier of a word pair, frequency of the pair and the list of positions 
where the pair appears [6]. 

Zhong et al. introduced a pattern discovery technique, which uses two 
processes: pattern deploying and pattern evolving, to refine the discovered patterns 
in text documents. The proposed approach allows to overcome the low-frequency 
and misinterpretation problems for text mining [4]. An automatic method for 



215 

discovering textual patterns is described in [7]. The method is extended to find 
generalized sequences in documents with additional annotations for each word. 

 
Figure 1. Single n-gram node 

3. Frequent pattern mining algorithms 

In [8] frequent pattern mining algorithm has been used for building frequent 
sequences graph in topic modeling approach. For building the required structure of 
frequent N-grams the technique based on apriori observation [9] has been 
considered. In the current research the performance of methods of finding frequent 
sequences has been compared taking into account their applications to topic 
modeling. However to achieve that, the structure in the form of graph with frequent 
sequences represented by nodes should be built, and hence connections between 
parent subsequences and child nodes should be generated. In order to attain this 
goal NGramLinking algorithm for frequent sequences is proposed. It is proceeded 
in the step  following finding sequences. 

For the comparison purpose the algorithms, which gather information 
concerning frequent sequences and their positions have been chosen. Required 
information is further used to add links between sequences. Such approach can be 



216 

applied in frequent itemset mining algorithms: PrefixSpan and GSP; as well as 
SuffixArrays dedicated to text datasets. The performance of all the techniques will 
be compared to SequenceJoining algorithm, which is designed to use in topic 
modeling tasks. All the mentioned algorithms are shortly described in the following 
subsections. 

3.1. GSP algorithm 

The GSP (Generalised Sequential Patterns) algorithm [10] has been designed 
for transactional data. The technique discovers generalized sequential patterns in 
the form of taxonomy, where each sequence represents a list of transactions and 
items are included across all levels of a hierarchy. The pseudocode of the algorithm  
is presented in Fig. 2. 

In the first step, having a set of k-length sequences, all new candidate 
sequences of length k+1 are generated by joining the existing ones. In the second 
step the generated set of sequences is pruned and sequences of less than required 
support value are removed. The steps are executed till the set of frequent sequences 
is empty. 
 
� Obtain a sequence in form of <x> as length-1 candid ates 

� find F 1 (the set of length-1 sequential patterns), after a  unique 
scan of database  

� Let k=1  
While F k is not empty do 
    - Form C k+1 , the set of length-(k+1) candidates from F k; 
    - If C k+1  is not empty, unique database scan,  

find F k+1  (the set of length(k+1) sequential patterns) 
    Let k=k+1;  
End While 

Figure 2. Pseudocode of GSP algorithm [11] 

3.2. PrefixSpan algorithm 

PrefixSpan (Prefix-Projected Sequential Pattern Mining) algorithm is a 
“projection-based, sequential pattern-growth approach for sequential pattern 
mining. In this approach, a sequence database is recursively projected into a set of 
smaller projected databases, and sequential patterns are grown in each projected 
database by exploring only locally frequent fragments” [12].  

The algorithm finds the complete set of sequential patterns and reduces the 
number of operations necessary to generate a candidate subsequence. As 
PrefixSpan based its ordered growth on prefix-ordered expansion, reduced number 
of “growth points” is used and projected databases are of smaller sizes. Fig. 3 
presents a pseudocode of PrefixSpan algorithm. 



217 

Input: A sequence database S, and the minimum support  
threshold min_sup 
Output: The complete set of sequential patterns 
Method: Call PrefixSpan(‹›, 0, S) 
Subroutine PrefixSpan( α, l, S| α) 
Parameters: α: a sequential pattern; l the length of α; 
S| α: α-projected database, α ≠ ‹›; otherwise, 
the sequence database S. 
Method: 
     1. Scan S| α once, find the set of frequent items b such that 
       (a) b can be assembled to the last element of α to 
       form a sequential pattern; or 
       (b) ‹ b› can be appended to α to form a sequential 
        pattern. 
     2. For each frequent item b , append it to α to form 
        a sequential pattern α’ , and output α’; 
     3. For each α’, construct α’-projected database S| α’ , and call 
PrefixSpan( α’, l+1, S| α’ ) 

Figure 3. PrefixSpan pseudocode [12] 

3.3. SuffixArrays algorithm 

Suffix Arrays algorithm has been developed for string searching [13]. Main 
idea of the algorithm consists in using each word of a document set as a first word 
of a sequence. Then all the indicated sequences are organized alphabetically.  
In fact, only an array of pointers to first words of each sequences is sorted. Then 
sequences are compared and grouped taking into account number of subsequences 
of equal prefix. An example of this approach is presented in Fig. 4. 
 

 
Figure 4. Sequences sorted by SuffixArray  



218 

3.4. SequenceJoining algorithm 

SequenceJoining algorithm, similarly to GSP, is based on candidate 
generation and their testing approach. However, the proposed algorithm builds data 
structure which is a graph of connected nodes representing all frequent sequences. 
The algorithm starts by building a reverse bigram index as it is presented in Fig. 5. 
 

 
Figure 5. Reverted bigram index [14] 

 
All pairs of words are the key for a list of positions. Each position is a number 

which indicates the document in the set and the offset of the first word of a bigram. 
Sequences of length k + 1 are created by joining two sequences of length k. All 
sequences of the length k are stored in a hash map. The keys are built from k − 1 
beginning words and are connected to list of n-grams starting with this key. For 
each sequence the key from all words except the first one is created. All sequences 
from the hash map linked with this key are selected. New N-gram of length k+1 is 
created by joining pairs with matching keys. The support is calculated by using 
lists of positions of both joined subsequences.  

Since the lists are in ascending order, finding positions of consecutive 
subsequences can be realized with the complexity of O(m + n) where m and n mean  
lengths of respective position lists.  In the proposed implementation binary search 
on both lists is used alternately. Such approach may significantly increase the 
efficiency of the whole algorithm. The complexity depends on the size of the result 
set. Only N-grams of satisfying support are selected as frequent. These steps are 
repeated for each length until the result is not empty. 

After creating a sequence of length k both joined sequences are linked as the 
left and right parent. Furthermore the sequence is added as a child to lists of 
children in both parent sequences. Thus the required structure in the form of graph 
with frequent sequences represented by nodes is built. 



219 

3.5. NGramLinking algorithm 

Except SequenceJoining algorithm all the considered ones do not generate 
connections between parent subsequences and child nodes. Therefore, after finding 
all frequent sequences additional step should be executed. All sequences with the 
same length are stored in a hash map. For all the sequences of the length k first and 
last subsequences are searched in a previously prepared map. These sequences are 
stored as the left and the right parents. The current sequence is added as a child to 
both parent sequences. Finally, the expected structure is built. 

4. Experiment results 

The experiments aimed at comparing the performance of GSP, PrefixSpan, 
SuffixArray and FrequenceJoining algorithms taking into account execution time 
for different amount of text documents. There were used two document datasets: 

• The OHSUMED test collection [15], which contains 20,000 first records of 
documents from MEDLINE.  

• The 20Newsgroups data set [16] - approximately 20,000 newsgroup 
documents. 

During experiments there were used implementations of GSP and PrefixSpan 
algorithms in SPMF, which is an open-source data mining library written in Java, 
dedicated to pattern mining [17]. As original implementations are prepared for 
searching patterns of itemsets, the modifications have been done and finally 
itemsets were represented by words. The remainder of algorithms were also 
implemented in Java software. All the tests were done on PC with a processor 
Intel®Core™ i3-540, (4M Cache, 3.06 GHz).  

The experiments were carried out for different number of documents taking 
into account different required support values. Moreover for each algorithm its 
performance was checked on raw as well as preprocessed with stop-list and 
stemming data. 

PrefixSpan and SuffixArray algorithms had similar run times. Additional step 
used by NGramLinking occurred to be insignificant. The proposed 
SequenceJoining algorithm was faster for smaller text sets (1,5 million and less 
words). Run time of SequenceJoining was significantly reduced for result sets of 
smaller sizes. Such a fact took place for higher support thresholds.  It means that an 
execution time of this algorithm depends on numbers of sequences with the 
successive lengths. The same dependence have not been noticed for the other 
algorithms. In all the cases, execution time for GSP considerably exceeded run 
times of the other algorithms. The results for all the algorithms except GSP and 
different parameter values are presented in Fig.6 till 10. 

 



220 

 
Figure 6. Execution time for OHSUMED with threshold 20 

 

 
Figure 7. Execution time for OHSUMED with threshold 50 

 

 
Figure 8. Run time  OHSUMED  (threshold 50) without stop-words after stemming 



221 

 
Figure 9. Run time  20Newsgroups (threshold 50) without stop-words after  stemming 

 

 
Figure 10. Time of execution for 20Newsgroups depending on threshold 

5. Concluding remarks 

In the paper the performance of frequent pattern mining algorithms GSP, 
PrefixSpan, SuffixArray and the new approach SequenceJoining were considered. 
In the case of the first three algorithms additional step of building graph structure 
has been proposed. Experiments have shown that  run time of all the algorithms 
except GSP is of similar range. Execution time is reduced for higher support 
thresholds, when the result sets are smaller. The SequenceJoining gave the best 
results for small document datasets. This feature has not been observed for the 
other examined algorithms. 

 
 



222 

REFERENCES 

[1] Manning Ch. D., Raghavan P, Schütze H. (2008) An Introduction to Information 
Retrieval, Cambridge University Press. 

[2] Robertson S., Zaragoza H. (2009) The Probabilistic Relevance Framework: BM25 
and Beyond, Found. Trends Inf. Retr, 3(4), 333–389. 

[3] Burges Ch. J. C. (1998) A Tutorial on Support Vector Machines for Pattern 
Recognition, Data Mining and Knowledge Discovery, 2, 121–167. 

[4] Zhong N., Li Y., Wu Sh.-T. (2012) Effective Pattern Discovery for Text Mining, IEEE 
Transactions on Data Engineering, 24(1), 30-44. 

[5] Aggarwal Ch. C., Han J. [eds] (2014) Frequent Pattern Mining, Springer 
International Publishing Switzerland. 

[6] Garcia-Hernández R. A., Martínez-Trinidad J.F., Carrasco-Ochoa J.A. (2010) Finding 
maximal sequential patterns in text document collections and single documents, 
Informatica, 34, 93–101. 

[7] Ahonen-Myka H. (2002) Discovery of frequent word sequences in text, Proc. the ESF 
Exploratory Workshop on Pattern Detection and Discovery, London, UK, 180–189. 

[8] Ożdżyński P., Zakrzewska D. (2017) Topic Modeling Based on Frequent Sequences 
Graphs, Świątek J., Tomczak J.M. (eds.), Advances in Systems Science, Advances in 
Intelligent Systems and Computing 539, Springer International Publishing, 86-97.  

[9] Agrawal, R., Srikant R. (1994) Fast algorithms for mining association rules in large 
databases, Proc. the 20th International Conference on Very Large Data Bases, VLDB, 
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 487-499. 

[10] Agrawal R., Srikant R. (1995) Mining sequential patterns, Proc. 1995 Int. Conf. Data 
Engineering (ICDE’95), 3–14 

[11] Slimani T., Lazzez A., (2013) Sequential Mining: Patterns and Algorithms Analysis, 
International Journal of Computer and Electronics Research, 2 (5), 639-647. 

[12] Pei J, Han J., Mortazavi-Asl J., Pinto H., Chen Q., Dayal U., Hsu M. (2001) 
PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern 
Growth, Proc. 2001 Int. Conf. Data Engineering ( ICDE ’01), 215-224. 

[13] Manber U., Myers G. (1989) Suffix arrays: A new method for on-line string searches, 
SODA ’90 Proc. the first ACM-SIAM symposium on Discrete algorithms, 319-327.  

[14] Ożdżyński P. (2014) Text Document Categorization Based on Word Frequent 
Sequence Mining, Information Systems Architecture and Technology, Contemporary 
Approaches to Design and Evaluation of Information Systems, 129-138.  

[15] ftp://medir.ohsu.edu/pub/ohsumed 

[16] http://www.ai.mit.edu/people/jrennie/20Newsgroups/ 
[17] Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, 

H. T. (2016). The SPMF Open-Source Data Mining Library Version 2. Proc. PKDD 
2016 Part III, Springer LNCS 9853, 36-40. 


