PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the feasibility of using biopolymers of different viscosities as immobilization carriers for laccase in synthetic dye removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza możliwości zastosowania biopolimerów o różnej lepkości jako nośników do immobilizacji lakazy w usuwaniu barwników syntetycznych
Języki publikacji
EN
Abstrakty
EN
The main aim of the study was to assess the feasibility of using biopolymers of different viscosities (high, medium and low viscosity) as immobilization carriers for laccase in synthetic dye removal. The following dye solutions were decolorized: indigo carmine (IC, anionic dye), methylene blue (MB, cationic dye), and their mixture in a molar mass ratio MB/IC=0.69, using biopolymers of different viscosities as laccase immobilization carriers. Toxicity tests were also carried out to assess the toxicity of the post-decolorization samples. Decolorization tests showed that the main decolorization mechanism depends on the dye class. The removal of IC (max. total removal efficiency 72.15%) was mainly by biocatalysis. The mechanism of the MB decolorization process was mainly by sorption on alginate beads, and the efficiency of enzymatic removal was low. However, the highest efficiency of MB decolorization (45.80%) was obtained for beads prepared using the high viscosity alginate when decolorization occurred by both sorption and biocatalysis. The results of mixture decolorization tests differ from the results obtained for single dyes. The results showed differences in the efficiency of the dye sorption process depending on the alginate used for immobilization. Moreover, the varying mechanisms of dye removal from the dye mixture were confirmed by toxicity tests. The occurrence of both biocatalysis and sorption promotes reduced toxicity.
PL
Głównym celem badań była ocena możliwości zastosowania biopolimerów o różnej lepkości (wysoka, średnia i niska lepkość) jako nośników do immobilizacji lakazy w celu usuwania barwników syntetycznych. Dekoloryzacji poddano następujące barwniki: indygo karmin (IC, barwnik anionowy), błękit metylenowy (MB, barwnik kationowy) i ich mieszaninę w stosunku molowym MB/IC=0.69, przy użyciu biopolimerów o różnej lepkości jako nośników do immobilizacji lakazy. W celu oceny toksyczności próbek poprocesowych przeprowadzono również testy toksyczności. Wyniki testów wykazały, że główny mechanizm dekoloryzacji zależy od klasy barwnika. Usunięcie IC (max. całkowita efektywność 72.15%) nastąpiło głównie na drodze biokatalizy. Dekoloryzacja MB następowała głównie poprzez sorpcję na kapsułkach alginianowych, a efektywność usuwania enzymatycznego była niska. Jednak najwyższą efektywność dekoloryzacji MB (45.80%) uzyskano przy użyciu alginianu o wysokiej lepkości, gdzie dekoloryzacja zachodziła zarówno na drodze biokatalizy jak i sorpcji. Wyniki testów odbarwiania mieszaniny różnią się od wyników uzyskanych dla pojedynczych barwników. Uzyskane wyniki wykazały różnice w efektywności procesu sorpcji barwnika w zależności od użytego do immobilizacji alginianu. Ponadto odmienne mechanizmy usuwania barwnika z ich mieszaniny zostały potwierdzone testami toksyczności. Występowanie zarówno biokatalizy jak i sorpcji sprzyja redukcji toksyczności próbek poprocesowych.
Rocznik
Strony
19--34
Opis fizyczny
Bibliogr. 87 poz., rys., tab., wykr.
Twórcy
  • Central Mining Institute – National Research Institute, Poland
  • Central Mining Institute – National Research Institute, Poland
  • Central Mining Institute – National Research Institute, Poland
autor
  • Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland
Bibliografia
  • [1] Abka-Khajouei, R., Tounsi, L., Shahabi, N., Patel, A.K., Abdelkafi, S. & Michaud, P. (2022). Structures, Properties and Applications of Alginates, Marine Drugs, 29, 20, 6, 664. DOI:10.3390/md20060364
  • [2] Ahlawat, A., Jaswal A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 105424. DOI:10.1016/j.ibiod.2022.105424
  • [3] Ahmad, R. & Kumar, R. (2010). Adsorption studies of hazardous malachite green onto treated ginger waste, Journal of Environmental Management, 91, 4, pp. 1032–1038. DOI:10.1016/j.jenvman.2009.12.016
  • [4] Ahmed, M.A., Brick, A.A. & Mohamed, A.A. (2017). An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route, Chemosphere, 174, pp. 280-288. DOI:10.1016/j.chemosphere.2017.01.147
  • [5] Al-Tohamy, R., Ali, S.S. Li, F., Okasha, K.M., Mahmoud, Y.A-G., Elsamahy T., Jiao, H., Fu, Y. & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicology and Environmental Safety, 232, 113160. DOI:10.1016/j.ecoenv.2021.113160
  • [6] Arenas, C.N., Vasco, A., Betancur, M. & Martinez, J.D. (2017). Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA), Process Safety and Environmental Protection, 106, pp. 224-238. DOI:10.1016/j.psep.2017.01.013
  • [7] Behera, M., Nayak, J., Banerjee, S., Chakrabortty, S. & Tripathy, S.K. (2021). A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach, Journal of Environmental Chemical Engineering, 9, 4, 105277. DOI:10.1016/j.jece.2021.105277
  • [8] Bennacef, C., Desobry-Banon, S., Probst, L. & Desobry, S (2021). Advances on Alginate Use for Spherification to Encapsulate Biomolecules, Food Hydrocolloids, 118, 106782. DOI:10.1016/j.foodhyd.2021.106782
  • [9] Bilal, M., Rasheed, T., Nabeel, F., Iqbal, H.M.N. & Zhao, Y. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A rewiev, Journal of Environmental Management, pp. 234. 253-264. DOI:10.1016/j.jenvman.2019.01.001
  • [10] Brugnari, T., Braga, D.M., dos Santos, C.S.A., Czelusniak Torres, B.H., Modkovski, T.A., Haminiuk C.W.I. & Maciel, G.M. (2021). Laccases as green and versatile biocatalysts: from lab to enzyme market—an overview, Bioresources and Bioprocessing, 8, 131. DOI:10.1186/s40643-021-00484-1
  • [11] Chee, S.Y., Wong, P.K. & Wong, C.L. (2011). Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia, Journal of Applied Phycology, 23, pp. 191-196. DOI:10.1007/s10811-010-9533-7
  • [12] Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773
  • [13] Choi, K.Y. (2021). Discoloration of indigo dyes by eco-friendly biocatalysts, Dyes and Pigments, 184, 108749. DOI:10.1016/j.dyepig.2020.108749
  • [14] Daâssi, D., Rodríguez-Couto S., Nasri M. & Mechichi T. (2014). Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads, International Biodeterioration & Biodegradation, 90, pp. 71-78. DOI:10.1016/j.ibiod.2014.02.006
  • [15] Dalginli K.Y. & Atakisi O. (2023). Immobilization with Ca–Alg@gelatin hydrogel beads enhances the activity and stability of recombinant thermoalkalophilic lipase, Chemical and Process Engineering: New Frontiers, 2023, 44(1), e2. DOI: 10.24425/cpe.2023.14229
  • [16] Deska, M. & Kończak, B. (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024
  • [17] Deska, M. & Kończak B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. (in Polish). DOI:10.15199/62.2020.3.22
  • [18] Deska, M. & Zawadzki P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667 (in Polish). DOI:10.15199/62.2021.7.5
  • [19] Deska, M. and Kończak, B. (2022), Laccase Immobilization on Biopolymer Carriers– Preliminary Studies, Journal of Ecological Engineering, 23, 4, pp. 235–249. DOI: 10.12911/22998993/146611
  • [20] Diorio, L.A., Salvatierra Frechou, D.M. & Levin, L.N. (2021). Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system, Revista Argentina de Microbiología, 53, 1, pp. 3-10. DOI:10.1016/j.ram.2020.04.007
  • [21] Drzymała, J. & Kalka, J. (2020). Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Allvibrio fischeri, Chemosphere, 248, 126085. DOI:10.1016/j.chemosphere.2020.126085
  • [22] Edwin, D.S.S., Manjunatha, J.G., Raril, C., Girish, T., Ravishankar, D.K. & Arpitha, H.J. (2021). Electrochemical analysis of indigo carmine using polyarginine modified carbon paste electrode, Journal of Electrochemical Science and Engineering, 11, 2, pp. 87-96. DOI:10.5599/jese.953
  • [23] Enayatzamir, K., Alikhani, H.A., Yakhchali, B., Tabandeh, F. & Rodríguez-Couto, S. (2010). Decolouration of azo dyes by Phanerochaete chrysosporium immobilized into alginate beads, Environmental Science and Pollution Research, 17, 1, pp. 145-153. DOI:10.1007/s11356-009-0109-5
  • [24] Eswaran, S.G., Afridi, P.S. & Vasimalai, N. (2022). Effective multi toxic dyes degradation using bio-fabricated silver nanoparticles as a green catalyst, Applied Biochemistry and Biotechnology, 195, pp. 3872–3887. DOI:10.1007/s12010-022-03902-y.
  • [25] Ezike, T.C., Ezugwu, A.L., Udeh, J.O., Eze, S.O.O. & Chilaka, F.C. (2020). Purification and characterisation of new laccase from Trametes polyzona WRF03, Biotechnology Reports, 28, e00566. DOI:10.1016/j.btre.2020.e00566.
  • [26] Fernandes, A., Pinto, B., Bonardo, L., Royo, B., Robalo, M.P. & Martins, L.O. (2021). Wasteful Azo dyes as a source of biologically active building blocks, Frontiers in Bioengineering and Biotechnology, 9, 672436. DOI:10.3389/fbioe.2021.672436.
  • [27] Fertah, M., Belfkira, A., Dahmane, E.M., Taourirte, M. & Brouillette F. (2017). Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed, Arabian Journal of Chemistry, 10, 2, pp. 3707-3714. DOI:10.1016/j.arabjc.2014.05.003
  • [28] Genázio Pereira, P.C., Reimão, R.V., Pavesi, T., Saggioro, E.M., Moreira, J.C. & Veríssimo Correia, F. (2017). Lethal and sub-lethal evaluation of Indigo Carmine dye and by products after TiO2 photocatalysis in the immune system of Eisenia andrei earthworms. Ecotoxicology and Environmental Safety, 143, pp. 275-282. DOI: 10.1016/j.ecoenv.2017.05.043
  • [29] George, J., Sri Rajendran, D., Kumar, P.S., Anand, S.S., Kumar, V.V. & Rangasamy, G. (2023). Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase. Chemosphere, 313, 137612. DOI:10.1016/j.chemosphere.2022.137612
  • [30] Gonçalves, M.C.P., Kieckbusch, T.G., Perna, R.F., Fujimoto, J.T., Morales, S.A.V. & Romanelli, J.P. (2019). Trends on enzyme immobilization researches based on bibliometric analysis, Process Biochemistry, 76, pp. 95-110. DOI:10.1016/j.procbio.2018.09.016
  • [31] Hamad, H.N. & Idrus, S. (2022). Recent Developments In The Application Of Bio-Waste-Derived Adsorbents For The Removal Of Methylene Blue From Wastewater: A Review, Polymers (Basel), 14, 4, 783. DOI:10.3390/polym14040783
  • [32] Hurtado, A., Aljabali, A.A.A., Mishra, V., Tambuwala, M.M. & Serrano-Aroca, A. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 19, 23, 9, 4486. DOI:10.3390/ijms23094486
  • [33] Islam, A., Teo, S.H., Taufiq-Yap, Y.H., Ng C.H., Vo, D-V.N, Ibrahim M.L., Hasan, Md. M, Khan M.A.R., Nur A.S.M. & Awual, Md.R. (2021). Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review, Resources, Conservation and Recycling, 175, 105849. DOI:10.1016/j.resconrec.2021.105849
  • [34] Kalyana, C.M., Ramakrishna, K. & Subba Rao, P.V. (2017). Kinetics and mechanism of oxidation of indigo carmine with potassium bromate: effect of CTAB and SDS micelles, International Journal of Chemical Sciences, 15, 4, 220.
  • [35] Katheresan V., Kansedo, J. & Lau, S.Y. (2018). Efficiency of Various Recent Wastewater Dye Removal Methods: A Review, Journal of Environmental Chemical Engineering, 6, 4, pp. 4676-4697. DOI:10.1016/j.jece.2018.06.060
  • [36] Khan, I., Saeed, K., Zekker, I., Zhang,B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T. & Khan, I. (2022) Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation, Water, 14, 2, 242. DOI:10.3390/w14020242
  • [37] Kishor, R., Bharagava, R.N. & Saxena, G. (2018) Industrial wastewaters: the major sources of dye contamination in the environment, ecotoxicological effects, and bioremediation approaches, in: R.N. Bharagava (Ed.), Recent Advances in Environmental Management 13, CRC Press Taylor & Francis
  • [38] Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI: 10.1016/j.jece.2020.105012
  • [39] Kofidis, T., Strüber, M., Wilhelmi, M., Anssar, M., Simon, A., Harringer, W. & Haverich A. (2001). Reversal of severe vasoplegia with single-dose methylene blue after heart transplantation, The Journal of Thoracic and Cardiovascular Surgery, 122, 4, pp. 823-824. DOI:10.1067/mtc.2001.115153
  • [40] Kumar, A., Sharma, G., Naushad, M., Ala’a, H., García-Penas, A., Mola, G.T., Si, C. & Stadler, F.J. (2020). Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review, Chemical Engineering Journal, 382, 122937. DOI:10.1016/j.cej.2019.122937
  • [41] Kumar, V.V., Venkataraman, S., Kumar, P.S., George, J., Sri Rajendran, D., Shaji A., Lawrence, N. Saikia, K. & Rathankumar, A.K. (2022). Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater, Environmental Pollution, 309, 119729. DOI:10.1016/j.envpol.2022.119729
  • [42] Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56. DOI:10.24425/aep.2023.144736
  • [43] Lee, K.Y. & Mooney, D.J. (2012). Alginate: properties and biomedical applications, Progress in Polymer Science, 37, pp. 106–126. DOI:10.1016/j.progpolymsci.2011.06.003
  • [44] Leontieș, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654
  • [45] Li, S., Cui, Y., Wen, M. & Ji G. (2023). Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna. Toxics, 11, 7, 594. DOI: 10.3390/toxics11070594
  • [46] Łabowska, M., Izabela, M. & Jerzy, D. (2019). Methods of Extraction, Physicochemical Properties of Alginates and Their Applications in Biomedical Field–a Review, Open Chemistry, 17, 1, pp. 738–762. DOI:10.1515/chem-2019-0077
  • [47] Ma, J., Lin, Y., Chen, X., Zhao, B. & Zhang, J. (2014). Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Sodium Alginate Aqueous Solutions, Food Hydrocolloids, 38, pp. 119–128. DOI:10.1016/j.foodhyd.2013.11.016
  • [48] Malinowski, S., Wardak C., Jaroszyńska-Wolińska J., Herbert P.A.F. & Pietrzak K. (2020) New electrochemical laccase-based biosensor for dihydroxybenzene isomers determination in real water samples, Journal of Water Process Engineering, 34, 101150. DOI: 10.1016/j.jwpe.2020.101150
  • [49] Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48,1 pp. 75-82. DOI: 10.24425/aep.2022.140546
  • [50] Martínez-Cano, B., Mendoza-Meneses, C.J., García-Trejo, J.F., Macías-Bobadilla, G., Aguirre-Becerra, H., Soto-Zarazúa, G.M. & Feregrino-Pérez, A.A. (2022). Review and Perspectives of the Use of Alginate as a Polymer Matrix for Microorganisms Applied in Agro-Industry, Molecules, 27, 13, 4248. DOI:10.3390/molecules27134248
  • [51] Micheletti, D.H., da Silva Andrade, J.G., Porto C.E., Alves, B.H.M, de Carvalho F.R., Sakai O.A. & Batistela V.R. (2023) A review of adsorbents for removal of yellow tartrazine dye from water and wastewater, Bioresource Technology Reports, 24, 101598. DOI: 10.1016/j.biteb.2023.101598
  • [52] Mohan, C, Yadav S., Uniyal, V, Taskaeva, N. & Kumari N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081
  • [53] Moon, S., Ryu J., Hwang, J. & Lee, C.G. (2023). Efficient removal of dyes from aqueous solutions using short-length bimodal mesoporous carbon adsorbents, Chemosphere, 313, 137448. DOI:10.1016/j.chemosphere.2022.137448
  • [54] Moorthy, A.K., Rathi, B.G., Shukla S.P., Kumar K. & Bharti, V.S. (2021). Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae, Environmental Toxicology Pharmacology, 82, 103552. DOI: 10.1016/j.etap.2020.103552
  • [55] Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review, Water, 14, 24, 4068. DOI: 10.3390/w14244068
  • [56] Niladevi, K.N. & Prema P. (2008). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x
  • [57] Oladoye, P.O., Ajiboye, T.O., Omotola, E.O. & Oyewola, O.J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater, Results in Engineering, 16, 100678. DOI:10.1016/j.rineng.2022.100678
  • [58] Oriol, R., Sirés, I., Brillas, E. & Andrade, A.R.D. (2019). A hybrid photoelectrocatalytic/photoelectro-Fenton treatment of Indigo Carmine in acidic aqueous solution using TiO2 nanotube arrays as photoanode. Journal of Electroanalytical Chemistry, 847, 113088. DOI:10.1016/j.jelechem.2019.04.048
  • [59] Palanisamy, S., Ramaraj, S.K., Chen S.-M., Yang T.C.K., Yi-Fan, P., Chen, T.-W., Velusamy V. & Selvam, S. (2017) A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol. Scientific Reports, 7, 41214. DOI: 10.1038/srep41214
  • [60] Park, C., Lee, M., Lee, B., Kim, S.-W., Chase, H.A., Lee, J. & Kim, S. (2007). Biodegradation and biosorption for decolourisation of synthetic dyes by Funalia trogii. Biochemical Engineering Journal, 36, 1, pp. 59-65. DOI:10.1016/j.bej.2006.06.007
  • [61] Peteiro C., 2018. Alginate production from marine macroalgae, with emphasis on kelp farming, in: Rehm, B.H.A., Moradali F. (Eds.), Alginates and Their Biomedical Applications, Springer Series in Biomaterials Science and Engineering, Springer, Singapore, pp. 27–66. DOI:10.1007/978-981-10-6910-9_2
  • [62] Pavithra, K.G. & Jaikumar, V. (2019). Removal of colorants from wastewater: a review on sources and treatment strategies, Journal of Industrial and Engineering Chemistry. 75, pp. 1–9. DOI: 10.1016/j.jiec.2019.02.011
  • [63] Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Lee, J. & Siengchin, S. (2022). Ecofriendly And Low-Cost Bio Adsorbent For Efficient Removal Of Methylene Blue From Aqueous Solution, Scientific Reports, 12, 20580. DOI:10.1038/s41598-022-22936-0
  • [64] Ramos, R.O., Albuquerque, M.V.C., Lopes, W.S., Sousa, J.T. & Leite, V.D. (2020). Degradation of indigo carmine by photo-Fenton, Fenton, H2O2/UV-C and direct UV-C: comparison of pathways, products and kinetics, Journal of Water Process Engineering, 37, 101535. DOI:10.1016/j.jwpe.2020.101535
  • [65] Rhein-Knudsen, N., Ale, M.T., Ajalloueian, F. & Meyer, A.S. (2017). Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp., Food Hydrocollois, 71, pp. 236-244. DOI:10.1016/j.foodhyd.2017.05.016
  • [66] Ristea, M.-E. & Zarnescu O. (2023). Review. Indigo Carmine: Between Necessity and Concern, Journal of xenobiotics, 13, pp.509-528. DOI:10.3390/jox13030033
  • [67] Saha, P.D., Bhattacharya, P., Sinha, K. & Chowdhury, S., (2013). Biosorption of Congo red and Indigo carmine by nonviable biomass of a new Dietzia strain isolated from the effluent of a textile industry, Desalination and Water Treatment, 51, pp. 28-30, pp. 5840-5847. DOI:10.1080/19443994.2012.762589
  • [68] Shah, S.S., Ramos, B. & Silva Costa Teixeira, A.C. (2022), Adsorptive Removal Of Methylene Blue Dye Using Biodegradable Superabsorbent Hydrogel Polymer Composite Incorporated With Activated Charcoal, Water, 14, 20, 3313. DOI:10.3390/w14203313
  • [69] Silva, T.H., Alves, A., Ferreira, B.M., Oliveira, J.M., Reys, L.L., Ferreira, R.J.F., Sousa, R.A., Silva, S.S., Mano, J.F. & Reis, R.L. (2012). Materials of marine origin: a review on polymers and ceramics of biomedical interest, International Materials Reviews, 57, 5, pp. 276-306. DOI:10.1179/1743280412Y.0000000002
  • [70] Siyal, A.A., Shamsuddin, M.R., Low, A., Rabat, N.E (2020) A review on recent developments in the adsorption of surfactants from wastewater, Journal of Environmental Management, 254, 109797. DOI:10.1016/j.jenvman.2019.109797
  • [71] Tabti, S., Benchettara A., Smaili F., Benchettara, A. & Berrabah S.E. (2022). Electrodeposition of lead dioxide on Fe electrode: application to the degradation of Indigo Carmine dye, Journal of Applied Electrochemistry, 52, pp. 1207–1217. DOI:10.1007/s10800-022-01709-7
  • [72] Thirumavalavan, M. (2023). Functionalized chitosan and sodium alginate for the effective removal of recalcitrant organic pollutants. Macromolecules, 234, 125276. DOI:10.1016/j.ijbiomac.2023.125276
  • [73] Tišma, M., , Žnidaršič-Plazl, P., Šelo G., Tolj, I., Šperanda M., Bucić-Kojić, A. & Planinić M. (2021). Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities, Bioresource Technology, 330, 124997. DOI:10.1016/j.biortech.2021.124997
  • [74] Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2022). Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  • [75] Veeranna, K.D., Lakshamaiah, M.T. & Narayan R.T. (2014). Photocatalytic degradation of indigo carmine dye using calcium oxide, International Journal of Photochemistry, 530570. DOI:10.1155/2014/530570
  • [76] Waghmode, T.R., Kurade, M.B., Sapkal, R.T., Bhosale, C.H., Jeon, B.H., Govindwar, S.P. (2019) Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red, Journal of Hazardous Materials. 371, pp. 5115–5122. DOI:10.1016/j.jhazmat.2019.03.004
  • [77] Wardak, C., Paczosa-Bator, B., Malinowski, S. (2020) Application of cold plasma corona discharge in preparation of laccase-based biosensors for dopamine determination, Materials Science and Engineering: C, 116, 111199. DOI:10.1016/j.msec.2020.111199
  • [78] Wu, K., Shi, M., Pan X.,Zhang, J., Zhang, X., Shen, T. & Tian, Y. (2022). Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing Bacillus thuringiensis: Degradation products and pathway, Enzyme and Microbial Technology, 156, 109999. DOI:10.1016/j.enzmictec.2022.109999
  • [79] Younes, S.B., Mechichi, T. & Sayadi, S. (2007). Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes, Journal of Applied Microbiology, 102, pp. 1033-1042. DOI:10.1111/j.1365-2672.2006.03152.x
  • [80] Zaied, M., Chutet, E., Peulon, S., Bellakhal, N., Desmazières, B., Dachraoui, M. & Chaussé, A. (2011). Spontaneous oxidative degradation of indigo carmine by thin films of birnessite electrodeposited onto SnO2, Applied Catalysis B: Environmental, 107, pp. 42-51. DOI:10.1016/j.apcatb.2011.06.035
  • [81] Zawadzki, P. & Deska, M., Decolorization of methylene blue in the advanced oxidation processes with sulfate and hydroxyl radicals, Przemysł Chemiczny, 100, 3, pp. 286-288 (in Polish). DOI: 10.15199/62.2021.3.12
  • [82] Zhou, W., Zhang, W. & Cai Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI: 10.1016/j.cej.2020.126272
  • [83] Zhuo, R., Zhang, J. Yu, H., Ma F. & Zhang, X. (2019). The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways, Chemosphere 234, pp. 733–745. DOI:10.1016/j.chemosphere.2019.06.113
  • [84] Websites:
  • [85] https://www.brenda-enzymes.org/index.php
  • [86] https://www.sigmaaldrich.com
  • [87] https://www.wipo.int
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cffca1f5-6186-47c0-b1a9-09540c49c15e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.