PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Heavy Metals from Textile Wastewater Using a Mixture of Carbon from Bare Hands and Carbide Waste as an Adsorbent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metal pollution, mainly originating from textile waste containing synthetic dyes and stabilizers such as Fe, alum, and lime, poses serious risks to health and the environment. To overcome this problem, this research explores the use of activated carbon for heavy metal reduction. Empty palm oil fruit bunches (EFB) offer a promising source of activated carbon due to their high lignocellulose content and functional groups (-OH and -COOH) that enhance heavy metal adsorption. In addition, carbide waste, which is classified as hazardous and toxic waste, poses an ecological threat if disposed of incorrectly. This research focuses on the use of EFB waste and carbide to reduce Fe metal in Fe metal synthesis waste. Various adsorbent ratios (2:2.5, 2.5:2, and 2.5:2.5) and contact times ranging from 30 to 150 min were investigated, with an initial metal synthesis waste concentration of 40 mg/L. The findings showed that longer contact times resulted in the removal of large amounts of Fe(II) metal, with rates reaching 94.325%. The increase in the pH of the adsorbent mixture is caused by the alkaline nature of carbide waste in activated carbon. The Langmuir isotherm model provided the best fit to the data, with a correlation Equation of y = 0.3882x + 1.4823 (R2 = 0.995, RL = 0.556), which shows the effectiveness of the TKS-carbide waste mixture in reducing Fe(II) ions in the waste textile. The Freundlich isotherm model also showed a reasonable fit, with a correlation equation of y = -0.2804x – 0.0133 (R2 = 0.95). In summary, EFB-carbide waste adsorbent is a successful, consistent, and environmentally friendly solution for the reduction of heavy metals in textile waste.
Słowa kluczowe
Rocznik
Strony
245--255
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Engineering, Muhammadiyah University, Jl. General Ahmad Yani 13, Ulu Palembang, 30263, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Engineering, Muhammadiyah University, Jl. General Ahmad Yani 13, Ulu Palembang, 30263, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Muhammadiyah University, Jl. General Ahmad Yani 13, Ulu Palembang, 30263, Indonesia
  • Department of Agricultural Industrial Technology, Faculty of Agriculture, Sriwijaya University, Jl. Raya Indralaya – Prabumulih Km. 32, Indralaya, Ogan Ilir, 30662, Indonesia
Bibliografia
  • 1. Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., & Ismail, A.F. 2019. Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76. https://doi.org/10.1016/j.jiec.2019.03.029
  • 2. Ahmad, S., Ahmad, A., Khan, S., Ahmad, S., Khan, I., Zada, S., & Fu, P. 2019. Algal extracts based biogenic synthesis of reduced graphene oxides (rGO) with enhanced heavy metals adsorption capability. Journal of Industrial and Engineering Chemistry, 72, 117–124.
  • 3. Anggi. (2020). Wong Kito Gallery.
  • 4. Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. 2017. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1). https://doi.org/10.1002/cben.201600010
  • 5. Baharudin, F., Mohd Tadza, M. Y., Mohd Imran, S. N., & Jani, J. 2018. Removal of Iron and Manganese in Groundwater using Natural Biosorbent. IOP Conference Series: Earth and Environmental Science, 140, 012046. https://doi.org/10.1088/1755-1315/140/1/012046
  • 6. Balaji, R., Sasikala, S., & Muthuraman, G. 2014. Removal of Iron from drinking / ground water by using agricultural Waste as Natural adsorbents. International Journal of Engineering and Innovative Technology (IJEIT), 3(12).
  • 7. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., & Sadeghi, M. 2021. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.643972
  • 8. Barakat, M.A. 2011. New trends in removing heavy metals from industrial wastewater. In Arabian Journal of Chemistry, 4(4). https://doi.org/10.1016/j.arabjc.2010.07.019
  • 9. Boparai, H.K., Joseph, M., & O’Carroll, D.M. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186(1), 458–465.
  • 10. Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., & Huang, Z. 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 26, 289–300.
  • 11. Christie, R. 2023. Azo Dyes and Pigments. Colour Chemistry. https://doi.org/10.1039/bk9781849733281-00072
  • 12. Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9). https://doi.org/10.1016/j.biortech.2005.05.001
  • 13. Cundari, L., Afrah, B.D., Jannah, A.M., Meizakh, P.R., Aziz, M.A., & Larasati, W.A. 2022. The Effect of Flowrate on Dye Removal of Jumputan Wastewater in a Fixed-Bed Column by Using Adsorption Model: Experimental and Breakthrough Curves Analysis. Reaktor, 22(1). https://doi.org/10.14710/reaktor.22.1.28-35
  • 14. Eletta, O.A.A., Ayandele, F.O., & Ighalo, J.O. 2023. Adsorption of Pb(II) and Fe(II) by mesoporous composite activated carbon from Tithonia diversifolia stalk and Theobroma cacao pod. Biomass Conversion and Biorefinery, 13(11), 9831–9840. https://doi.org/10.1007/s13399-021-01699-0
  • 15. Fu, F., & Wang, Q. 2011. Removal of heavy metal ions from wastewaters: A review. In Journal of Environmental Management, 92(3). https://doi.org/10.1016/j.jenvman.2010.11.011
  • 16. Gorini, F., Muratori, F., & Morales, M.A. 2014. The Role of Heavy Metal Pollution in Neurobehavioral Disorders: a Focus on Autism. Review Journal of Autism and Developmental Disorders, 1(4). https://doi.org/10.1007/s40489-014-0028-3
  • 17. Gupta, V.K., Agarwal, S., & Saleh, T.A. (2011). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research, 45(6), 2207–2212. https://doi.org/10.1016/j.watres.2011.01.012
  • 18. Gupta, V.K., Tyagi, I., & Sadegh, H. 2015. Nanoparticles as Adsorbent; A Positive Approach for Removal of Noxious Metal Ions: A Review. https://api.semanticscholar.org/CorpusID:51787264
  • 19. Habuda-Stanić, M., Ravančić, M., & Flanagan, A. 2014. A Review on Adsorption of Fluoride from Aqueous Solution. Materials, 7(9), 6317–6366. https://doi.org/10.3390/ma7096317
  • 20. Hameed, B.H., Din, A.T.M., & Ahmad, A.L. 2007. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3). https://doi.org/10.1016/j.jhazmat.2006.07.049
  • 21. Ho, Y.-S., & McKay, G. 2003. Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38(7), 1047–1061.
  • 22. Jain, A.K., Gupta, V.K., Bhatnagar, A., & Suhas. 2003. Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 101(1). https://doi.org/10.1016/S0304-3894(03)00146-8
  • 23. Karim, M.A., Nasir, S., Widowati, T.W., & Hasanudin, U. 2023. Kinetic Study of Adsorption of Metal Ions (Iron and Manganese) in Groundwater Using Calcium Carbide Waste. Journal of Ecological Engineering, 24(5), 155–165. https://doi.org/10.12911/22998993/161671
  • 24. Lo, S.F., Wang, S.Y., Tsai, M J., & Lin, L.D. 2012. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research and Design, 90(9). https://doi.org/10.1016/j.cherd.2011.11.020
  • 25. Mehta, D., Mondal, P., & George, S. 2016. Utilization of marble waste powder as a novel adsorbent for removal of fluoride ions from aqueous solution. Journal of Environmental Chemical Engineering, 4(1), 932–942.
  • 26. Mohseni, A., Kube, M., Fan, L., Roddick, F.A. 2021. Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance. Chemosphere, 276. https://doi.org/10.1016/j.chemosphere.2021.130028
  • 27. Naseeruteen, F., Hamid, N.S.A., Suah, F.B.M., Ngah, W.S.W., & Mehamod, F.S. 2018. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. International Journal of Biological Macromolecules, 107, 1270–1277.
  • 28. Pramana, A., Zalfiatri, Y., & Sari, E.O. 2021. Effect of temperature on lignin isolation by using organosolv method from oil palm empty fruit bunch. Journal of Physics: Conference Series, 2049(1). https://doi.org/10.1088/1742-6596/2049/1/012037
  • 29. Purnawan. 2013. Degradation of Naphthol and Indigosol Dyes from Jumputan Batik Industrial Waste Using an Electrocoagulation System. RAPI XII National Symposium, 1–6.
  • 30. Rai, P.K., Sharma, A.P., & Tripathi, B.D. 2007. Urban environment status in Singrauli Industrial region and its eco-sustainable management: A case study on heavy metal pollution. Urban Planning and Environment, Strategies and Challenges, 213–217.
  • 31. Renge, V.C., Khedkar, S.V, & Pande, S.V. 2012. Removal of Heavy Metals From Wastewater Using Low Cost Adsorbents : a Review. Scientific Reviews and Chemical Communications Journal, 2(4). https://doi.org/10.2147/SAR.S24800
  • 32. Renu, Agarwal, M., & Singh, K. 2017. Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7(4). https://doi.org/10.2166/wrd.2016.104
  • 33. Saravanan, A., Kumar, P.S., Hemavathy, R.V, Jeevanantham, S., Harikumar, P., Priyanka, G., & Devakirubai, D.R.A. 2022. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Science of The Total Environment, 812, 152456.
  • 34. Tan, I.A.W., Hameed, B.H., & Ahmad, A.L. 2007. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127(1–3). https://doi.org/10.1016/j.cej.2006.09.010
  • 35. Tanaydin, M.K., & Goksu, A. 2021. Optimization of the adsorption of methyl green dye on almond shells using central composite design. Desalination Water Treat, 227, 425–439.
  • 36. Tong, Y., McNamara, P.J., & Mayer, B.K. 2019. Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environmental Science: Water Research and Technology, 5(5). https://doi.org/10.1039/c8ew00938d
  • 37. Türkmen, D., Bakhshpour, M., Akgönüllü, S., Aşır, S., & Denizli, A. 2022. Heavy Metal Ions Removal From Wastewater Using Cryogels: A Review. Frontiers in Sustainability (Vol. 3). https://doi.org/10.3389/frsus.2022.765592
  • 38. Wang, Y.X., Ngo, H.H., & Guo, W.S. 2015. Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Science of the Total Environment, 533. https://doi.org/10.1016/j.scitotenv.2015.06.087
  • 39. Zhou, P., Yuan, H., Ou, L., & Zhiyuan, P. 2019. Removal of Cd (II) and Cu (II) ions from aqueous solutions using tannin-phenolic polymer immobilized on cellulose. Journal of Macromolecular Science, Part A, 56(7), 717–722.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cff99ed2-c589-4c6d-9917-86c1df166f56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.